LHC AC dipole preliminary noise considerations

R. Tomás, J. Serrano

29th of July, 2009

AC dipole signal from Javier

García

Noise floor at 10^{-5} level and sidebands and peaks close to 10^{-4} level. Rogelio Tomás

Zoom on sidebands

Are these sidebands real?

Simulating a 10⁻⁴ peak on Q_x at max AC strains

 10^{-4} noise peak on resonance causes 0.4σ oscillation $\rightarrow 16\%$ emittance blow-up

- Noise floor is well at 10^{-5} level ($\approx 0.2\%$ blow-up)
- Sidebands are worrysome
- Peaks at 10⁻⁴ seem dangerous only if on resonance
- Avoid resonance conditions of the form $NQ_D + Q_{x,y} = Z$
- Which was anyway suggested to avoid non-linear resonances from a perfect AC dipole: PRSTAB **5** 54001 and "Reliable Operation of the AC dipole in the LHC", EPAC08.

AC dipole non-linear resonances

 $-Q_x + (k - j + 1)Q_D = p$, with $(j, k, p) \in Z^3$ \rightarrow In presence of strong coupling the diagram is 3D!

The effect of $-Q_x-3Q_D=-1$

