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 Resonant behavior in synchrotrons 

 Multipole expansion of magnetic fields 

 Hamiltonian formalism for nonlinear 

optics 

 Results of first measurements in the 

PSB 
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Part I 

Review of some basics 
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Resonant behavior in synchrotrons 

 In general, resonant 

behavior can occur 

whenever 

  

 

 order of resonance:  

    

 

 nth order multipole 

magnet perturbation can 

excite resonances up to 

nth order  
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Complex potential of magnetic 

multipoles 
 Multipole magnets can be described by complex magnetic potential: 

 

 

 

 

 

 Hamiltonian is proportional real part of ψ 

 Example: normal sextupole (n=3, A3=0) 

 

 

 

 

 

 

 

 Vector equipotentials=field lines, scalar equipotential=pole face contour 
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Part II 

Hamiltonian formalism for 

resonance measurement 
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The general approach 

 Step 1: define a method of mapping nonlinear particle motion 

in an accelerator (Taylor maps) 

 

 Step 2: define the relationship between map and machine 

observables (Fourier spectra of transverse beam trajectories) 

 Step 3: identify resonance driving terms 

 

 Trajectory through a multipole can be mapped using the 

Hamiltonian of the multipole magnet: 
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Taylor maps for  

nonlinear magnet elements 
 Maps for nonlinear lattice elements can’t be written in terms of transfer 

matrices; need new approach (exponential Lie operators)  

 

 Definition of exponential Lie operator       acting on a function g: 

  

 

  

 

 

 

 Particle’s coordinates       after passage through a multipole can 

  be mapped using the Hamiltonian of the multipole magnet: 
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Example: Taylor map for a thin-lens 

normal sextupole kick (1 of 2) 

 Hamiltonian for an nth order multipole kick is proportional to the 

vector potential for the multipole:   

       

 

 

 So for a thin-lens normal sextupole (n=3, A3=0), the Hamiltonian is 

 

 

 

 And the map relating trajectory before and after the sextupole kick is 
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L is magnet length,  

q is particle charge,  

p0 is momentum 



Example: Taylor map for a thin-lens 

normal sextupole kick (2 of 2) 

 Hamiltonian for normal sextupole lens: 

 

 

 The derivatives of h (for the Poisson bracket           ) are 

 

 

  

 and so the new coordinates after the sextupole kick are 
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The Hamiltonian for  

many multipole kicks (1 of 2) 

 To first order, the Hamiltonian for all multipole elements in the ring can be 

expressed as a sum over i individual multipole elements:   

      

 

 

 

 Insert expression for x and y (solutions to unperturbed equations of motion): 
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The Hamiltonian for  

many multipole kicks (2 of 2) 
 Recall: Multinomial expansion of polynomials 

 

 
 

 Using multipole expansion, arrive at a general expression for the 
perturbative Hamiltonian representing i multipole kicks: 

 

 

 

 

 

 

 

 

 

  (Vni = Ani (skew coefficient) if l+m is odd;  

   Vni = Bni (normal coefficient) if l+m is even) 
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Relation between Hamiltonian driving terms 

hjklm and observable spectrum 

 Frequencies excited by multipole perturbations are visible in the Fourier spectrum 

of the beam trajectory 

 The Hamiltonian term hjklm excites 
  the resonance (j-k)Qx+(l-m)Qy=integer  

 the horizontal spectrum line (1-j+k)Qx+(m-l)Qy (if l ≠ 0) 

 the vertical spectrum line (k-j)Qx+(1-l+m)Qy (if l≠0)                 

 Example: tracking simulation with normal sextupole errors; Qx=4.238, Qy=4.389                  
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Summary of resonances and spectral lines 

excited by driving terms hjklm(up to n=3) 
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Normal Quadrupole 

Normal Sextupole 

Skew Quadrupole 

Skew Sextupole 

 Terms with l+m=even 

correspond to normal 

multipoles, l+m=odd to 

skew multipoles 

 

  A single line in the 

spectrum can be 

excited by several 

Hamiltonian driving 

terms 

 

 Theory predicts 

amplitudes and phase 

of spectral line from 

each driving term 



Amplitude and phase of Hamiltonian  

driving terms hjklm 
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 Amplitude and phase of a resonance driving term are identified via 

comparison w/ amplitude and phase of spectral lines 

 Once driving terms are known, can find settings for a pair of corrector 

magnets that will compensate for each driving term  



Part III 

Spectrum measurements 
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Turn-by-turn trajectory measurements 

 Trial of trajectory measurements was done 

with three BPMs 

 

 Tune kicker and transverse damper used to 

cause transverse oscillations 

 

 Oscillation amplitude from tune kicker or 

damper was smaller than desired (~1 mm 

peak-to-peak) 

 

 Taking advantage of transverse instability 

gives better horizontal oscillation amplitude 
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Spectra of 

measured 

trajectories 
 Orange - measured x spectrum 

 blue - measuredy spectrum  

 red  - tracking w/ normal sext errors 

 Peaks visible near (but not exactly on) 

resonance frequencies  

 Possible appearance of skew octupole 

term h0121:  

 H line (2,-1), V line (1,0) 

 Amplitude of peaks is small relative to 

noise floor; phase and amplitude 

inconsistent on repeated pulses 

 Spectrum also shows noise peaks, 

always visible at ~263 and 297 KHz 
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Spectra of measured trajectories 
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Summary 

 Hamiltonian driving terms describing nonlinear imperfections can be 

determined from measured beam trajectory spectra 

 Driving terms can then be compensated with corrector magnets 

 

 Trial measurements were made in PSB before LS1, but spectral 

analysis was complicated by several factors: 
 low oscillation amplitude/signal-to-noise ratio 

 large tune ripple 

 “noise” peaks which are always present at ~263 and 297 KHz 

 Nonetheless, first measurements show some hints of higher-order 

frequency components 

 After LS1, measurements will be repeated with abovementioned 

problems (hopefully) resolved, and we’ll try to compensate whatever 

resonance driving terms we observe 
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Thank you for your attention. 
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