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Part I 

Review of some basics 

28/04/2014 Meghan McAteer 3 



Resonant behavior in synchrotrons 

 In general, resonant 

behavior can occur 

whenever 

  

 

 order of resonance:  

    

 

 nth order multipole 

magnet perturbation can 

excite resonances up to 

nth order  

29/04/2014 Meghan McAteer 4 

integerQnQn y2x1 

21 nnn 

3Qy = 13 

3
Q

x
 =

 1
3
 

2
Q

x
 =

 9
 

2Qy = 9 

Qy = 4 

Q
x
 =

 4
 



Complex potential of magnetic 

multipoles 
 Multipole magnets can be described by complex magnetic potential: 

 

 

 

 

 

 Hamiltonian is proportional real part of ψ 

 Example: normal sextupole (n=3, A3=0) 

 

 

 

 

 

 

 

 Vector equipotentials=field lines, scalar equipotential=pole face contour 
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Part II 

Hamiltonian formalism for 

resonance measurement 
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The general approach 

 Step 1: define a method of mapping nonlinear particle motion 

in an accelerator (Taylor maps) 

 

 Step 2: define the relationship between map and machine 

observables (Fourier spectra of transverse beam trajectories) 

 Step 3: identify resonance driving terms 

 

 Trajectory through a multipole can be mapped using the 

Hamiltonian of the multipole magnet: 
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Taylor maps for  

nonlinear magnet elements 
 Maps for nonlinear lattice elements can’t be written in terms of transfer 

matrices; need new approach (exponential Lie operators)  

 

 Definition of exponential Lie operator       acting on a function g: 

  

 

  

 

 

 

 Particle’s coordinates       after passage through a multipole can 

  be mapped using the Hamiltonian of the multipole magnet: 
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Example: Taylor map for a thin-lens 

normal sextupole kick (1 of 2) 

 Hamiltonian for an nth order multipole kick is proportional to the 

vector potential for the multipole:   

       

 

 

 So for a thin-lens normal sextupole (n=3, A3=0), the Hamiltonian is 

 

 

 

 And the map relating trajectory before and after the sextupole kick is 
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L is magnet length,  

q is particle charge,  

p0 is momentum 



Example: Taylor map for a thin-lens 

normal sextupole kick (2 of 2) 

 Hamiltonian for normal sextupole lens: 

 

 

 The derivatives of h (for the Poisson bracket           ) are 

 

 

  

 and so the new coordinates after the sextupole kick are 
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The Hamiltonian for  

many multipole kicks (1 of 2) 

 To first order, the Hamiltonian for all multipole elements in the ring can be 

expressed as a sum over i individual multipole elements:   

      

 

 

 

 Insert expression for x and y (solutions to unperturbed equations of motion): 
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The Hamiltonian for  

many multipole kicks (2 of 2) 
 Recall: Multinomial expansion of polynomials 

 

 
 

 Using multipole expansion, arrive at a general expression for the 
perturbative Hamiltonian representing i multipole kicks: 

 

 

 

 

 

 

 

 

 

  (Vni = Ani (skew coefficient) if l+m is odd;  

   Vni = Bni (normal coefficient) if l+m is even) 
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Relation between Hamiltonian driving terms 

hjklm and observable spectrum 

 Frequencies excited by multipole perturbations are visible in the Fourier spectrum 

of the beam trajectory 

 The Hamiltonian term hjklm excites 
  the resonance (j-k)Qx+(l-m)Qy=integer  

 the horizontal spectrum line (1-j+k)Qx+(m-l)Qy (if l ≠ 0) 

 the vertical spectrum line (k-j)Qx+(1-l+m)Qy (if l≠0)                 

 Example: tracking simulation with normal sextupole errors; Qx=4.238, Qy=4.389                  

    

  

        

 

 

29/04/2014 Meghan McAteer 13 

Qy 
2Qy Qx+Qy 

Qx-Qy 

Qx 



Summary of resonances and spectral lines 

excited by driving terms hjklm(up to n=3) 
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Normal Quadrupole 

Normal Sextupole 

Skew Quadrupole 

Skew Sextupole 

 Terms with l+m=even 

correspond to normal 

multipoles, l+m=odd to 

skew multipoles 

 

  A single line in the 

spectrum can be 

excited by several 

Hamiltonian driving 

terms 

 

 Theory predicts 

amplitudes and phase 

of spectral line from 

each driving term 



Amplitude and phase of Hamiltonian  

driving terms hjklm 
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 Amplitude and phase of a resonance driving term are identified via 

comparison w/ amplitude and phase of spectral lines 

 Once driving terms are known, can find settings for a pair of corrector 

magnets that will compensate for each driving term  



Part III 

Spectrum measurements 
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Turn-by-turn trajectory measurements 

 Trial of trajectory measurements was done 

with three BPMs 

 

 Tune kicker and transverse damper used to 

cause transverse oscillations 

 

 Oscillation amplitude from tune kicker or 

damper was smaller than desired (~1 mm 

peak-to-peak) 

 

 Taking advantage of transverse instability 

gives better horizontal oscillation amplitude 
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Spectra of 

measured 

trajectories 
 Orange - measured x spectrum 

 blue - measuredy spectrum  

 red  - tracking w/ normal sext errors 

 Peaks visible near (but not exactly on) 

resonance frequencies  

 Possible appearance of skew octupole 

term h0121:  

 H line (2,-1), V line (1,0) 

 Amplitude of peaks is small relative to 

noise floor; phase and amplitude 

inconsistent on repeated pulses 

 Spectrum also shows noise peaks, 

always visible at ~263 and 297 KHz 
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Spectra of measured trajectories 
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Summary 

 Hamiltonian driving terms describing nonlinear imperfections can be 

determined from measured beam trajectory spectra 

 Driving terms can then be compensated with corrector magnets 

 

 Trial measurements were made in PSB before LS1, but spectral 

analysis was complicated by several factors: 
 low oscillation amplitude/signal-to-noise ratio 

 large tune ripple 

 “noise” peaks which are always present at ~263 and 297 KHz 

 Nonetheless, first measurements show some hints of higher-order 

frequency components 

 After LS1, measurements will be repeated with abovementioned 

problems (hopefully) resolved, and we’ll try to compensate whatever 

resonance driving terms we observe 
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Thank you for your attention. 
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