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Outline

= Review of some basics
= Resonant behavior in synchrotrons
= Multipole expansion of magnetic fields
= Hamiltonian formalism for nonlinear
optics

= Results of first measurements in the
PSB

28/04/2014 Meghan McAteer 2



28/04/2014 Meghan McAteer 3



Resonant behavior in synchrotrons

In general, resonant
behavior can occur
whenever

n,Q, +n,Q, =integer

order of resonance:
Nn= nl + n2

nth order multipole
magnet perturbation can
excite resonances up to
nth order
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Complex potential of magnetic

multigoles

Multipole magnets can be described by complex magnetic potential:

1 . .
oY, HA Ny | [
n | /AT
= As(X,y) +1V(X,y) 0.5 "‘)__,..- I\
Hamiltonian is proportional real part of g TN\ N\ 4
Example: normal sextupole (n=3, A3=0) > 0.0f i 1 i { 1.
As(x,y):Re[l(Bs+iA3)(x+iy)3} | ‘h ,..-\
3 . _a M e
1 ~0.5} A/
Lo e -ay?) Y \|[/ —
Vo) =Im| < (B, +in, Yoy | ok ) L
1 2 3 -1.0 -05 0. 0.5
:583(3x y -3y ) <

Vector equipotentials=field lines, scalar equipotential=pole face contour

28/04/2014 Meghan McAteer 5



29/04/2014 Meghan McAteer 6



The general approach

= Step 1: define a method of mapping nonlinear particle motion
In an accelerator (Taylor maps)

= Step 2: define the relationship between map and machine
observables (Fourier spectra of transverse beam trajectories)

= Step 3: identify resonance driving terms

= Trajectory through a multipole can be mapped using the
Hamiltonian of the multipole magnet:
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Taylor maps for

nonlinear magnet elements

= Maps for nonlinear lattice elements can'’t be written in terms of transfer
matrices; need new approach (exponential Lie operators)

= Definition of exponential Lie operator ¢/ acting on a function g:

N 1 / Recall Taylor series
e.f.g =g+ [f’g ]+§[f’[f’g]] T expc?;(légtri]gi?gnocftion:
[f g]: @i 6g B 5i 5% (Poisson ¢ :1+%+5+'"

"7 Oxop opox brackey - -

- Particle’s coordinates X after passage through a multipole can /~ Recall from classical "\

. . . . mechanics: time evolution
be mapped using the Hamiltonian of the multipole magnet: of a function g(x,px) from
_ _ Poisson bracket with
—H: Hamiltonian
N
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Example: Taylor map for a thin-lens
normal sextupole kick (1 of 2)

Hamiltonian for an nth order multipole kick is proportional to the
vector potential for the multipole:

g is particle charge,

L is magnet length,
} Po is momentum

_Abo i L o
h= o Re{n(Bn+|An)(x+|y)

So for a thin-lens normal sextupole (n=3, A3=0), the Hamiltonian is

h= qLBs (XS _3Xy2)

3P,
And the map relating trajectory before and after the sextupole kick is
X X
P | _ )|,
y y
Py ). By J,
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Example: Taylor map for a thin-lens
normal sextupole kick (2 of 2)

= Hamiltonian for normal sextupole lens: h gLB,

_ 3 2
~ap, (x 3Xy )

- The derivatives of h (for the Poisson bracket [h,X]) are

ch _ qLB, (x2—3y2) @:qLBg (6xy) oh _oh -0 6)?_8)?_6)?_6)7 _1

Ox P P op, p, ox op, oy op,

and so the new coordinates after the sextupole kick are

oh
Xyt
X apx XO
oh qLB; (. 2 2
__ X5 —
px _ X0 glzl( _ px0+ pO <0 yo)
y Yot —— Yo
0 gLB
py f p _% yo p03 (2X0y0)
yo 6y
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The Hamiltonian for
many multipole kicks (1 of 2)

To first order, the Hamiltonian for all multipole elements in the ring can be
expressed as a sum over i individual multipole elements:

h= Zhi = C;)LiRe{Zi(Bn (i) +IA (S, ))(X(Si )+1y(s ))n}

Insert expression for x and y (solutions to unperturbed equations of motion):

i((Dx (Si )'pro ) + e_i((px (Si )+fo0 )

2
+e
2

X(S,) =23, B,(5, JCOS(P, (S ) + Py ) = /23, B.(S, )~

e i@y (Si )+®y0 )

—i(py (Si )+Py0 )

y(Si )= \/Z‘JyBy (Si )Cos(q)y (Si )+ Pyo )= \/ZJyIBy (Si )
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The Hamiltonian for

many muItiEoIe kicks g2 of 22

Recall: Multinomial expansion of polynomials

n_ nt i gm
(a+b+c+d) =j+k§m3nj!k!”m!u bc'd

Using multipole expansion, arrive at a general expression for the
perturbative Hamiltonian representing i multipole kicks:

j+K [+m _
h= Zhjklm 2J ) (ZJ ) [(J_k)§0x+(|—m)goy]
JKlm
— q I+m [J ow +{1- m)(pyl]

(Vni = Ani (skew coefficient) if [+m is odd,;
Vni = Bni (normal coefficient) if [+m is even)
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Relation between Hamiltonian driving terms
hikm and observable spectrum

amplitude

Frequencies excited by multipole perturbations are visible in the Fourier spectrum
of the beam trajectory

The Hamiltonian term hjklm excites
the resonance (j-k)Qx+(I-m)Qy=integer
= the horizontal spectrum line (1-j+k)Qx+(m-I)Qy (if | # 0)

= the vertical spectrum line (k-j)Qx+(1-1+m)Qy (if 170)
Example: tracking simulation with normal sextupole errors; Qx=4.238, Qy=4.389

oootf | 0.001}

5x 1074} 20y < Qx | 5x 1074} ooy [

gt ~ .-t S
i ] E 11073} ’ ]

11— Mﬁunlm;nh il
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Summary of resonances and spectral lines
excited by driving terms hjkim(up to n=3)

Normal Quadrupole

Skew Quadrupole

= Terms with [+m=even

Term | Res. | Hline | V line Term | Res. | Hline | V line correspond to normal

hoot1 (0,0) — (0,1) hotio | (—1,1) _ (1,0) multipoles, I+m=odd to

hooso 0.2) . 0.—1) hoot | (=D | (©O.1) _ skew multipoles

hjjeo | (0,0) | (1,0) - higro | (1,1) | (0,=1) | (=1,0)

haooo | (2.0) | (=1.0) _ = Asingle line in the

spectrum can be

Normal Sextupole Skew Sextupole a);crgﬁ%g?;iedvﬂe\:ﬁ:g

Term Res. H line | V line Term Res. H line | V line terms

hoii1 | (=1,0) — (1,1) hoor2 | (0,—1) - (0,2)

hoizo | =1.2) | = | =D hooso | 03) | - | ©0.=2) | . Theory predicts

hipo2 | (1,-2) | (0,2) - hoo10 | (=2,1) - (2,0) amplitudes and phase

hyony (1,0) | (0,0) | (=1,1) hygor | (0,-1) | (1,1 - of spectral line from

hioo | (12) | 0-2) [<L=D| [ hi | ©1 [ =D ] 00 | eachdrivingterm

hiooo | (=1,0) | (2,0) - haoor | (2,-1) | (=1,1) -

h3peo | (3,0) | (=2,0) - hyoro | 2,1) [(=1,-1)] (=2,0)
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Amplitude and phase of Hamiltonian
driving terms hijkim

Generating Function

Spectral Line Plane

s .',"k— {+m g
2. j- (20,) 77 (21,) %" | f;uim| | Horizontal
Amplitude | Fikim]
, i+k l+m=—1 r .
2-1- (2L;) = (2Ly) = |fjtmm| | Vertical
Diktt Yeg — 5 Horizontal
Phase éjklm
Pjktm + Yy, — % Vertical
h,. El
Gkl
J'r_-jkim

1 — ;Eﬂ[(f E«JCJ,,: | “ 'Hi.:lf‘?.#_

Amplitude and phase of a resonance driving term are identified via

comparison w/ amplitude and phase of spectral lines

Once driving terms are known, can find settings for a pair of corrector

magnets that will compensate for each driving term
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Turn-by-turn trajectory measurements

= Trial of trajectory measurements was done
with three BPMs

= Tune kicker and transverse damper used to
cause transverse oscillations

= Oscillation amplitude from tune kicker or 0 | .Em. | ‘“}“ | &m ED.D. lﬂﬂﬂ

damper was smaller than desired (~1 mm 0.3}
peak-to-peak) E—-’f :

S o0l

= Taking advantage of transverse instability = -o0.1}
gives better horizontal oscillation amplitude —0.2¢
—03E

0 200 400 600 800 1000
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Spectra of
measured
trajectories

Orange - measured x spectrum
blue - measuredy spectrum
red - tracking w/ normal sext errors

Peaks visible near (but not exactly on)
resonance frequencies

Possible appearance of skew octupole
term h0121:

H line (2,-1), V line (1,0)
Amplitude of peaks is small relative to

noise floor; phase and amplitude
inconsistent on repeated pulses

Spectrum also shows noise peaks,
always visible at ~263 and 297 KHz
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Summary

= Hamiltonian driving terms describing nonlinear imperfections can be
determined from measured beam trajectory spectra

= Driving terms can then be compensated with corrector magnets

= Trial measurements were made in PSB before LS1, but spectral

analysis was complicated by several factors:

low oscillation amplitude/signal-to-noise ratio
large tune ripple
“noise” peaks which are always present at ~263 and 297 KHz

= Nonetheless, first measurements show some hints of higher-order
frequency components

= After LS1, measurements will be repeated with abovementioned
problems (hopefully) resolved, and we’ll try to compensate whatever
resonance driving terms we observe
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