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Concatenat ion  
of Lie Algebraic Maps  

Liam M. Healy and Alex  J. Dragt 

ABSTRACT Time evolution in a Hamiltonian system may be repre- 
sented by a transfer map, which in turn may be represented as a product 
of Lie transformations factored by order. Two such products in succession 
may be concatenated into a single product. It is possible to do this even 
when the Lie transformations include inhomogeneous terms. Rules are given 
for combining and ordering Lie transformations in the general case through 
sixth order. These rules are presented in an algorithmic fashion suitable for 
manipulation by computer. 

Such techniques have applications to many Hamiltonian systems, includ- 
ing accelerator beam dynamics and optics. The concatenation could repre- 
sent, for instance, the combined effects of two successive beamline elements 
in a particle accelerator. In this case, inhomogeneous terms can arise when 
there are placement, alignment, or powering errors. 

4.1 Introduction 

In a Hamiltonian system such as a particle accelerator, it is often important 
to know where a particle will be at a certain time given its position in phase 
space at some previous time. The relation that  gives this information is 
called the transfer map. This transfer map can be represented by a sequence 
of Lie transformations factored by order. 

It is often desirable to know to a given order the Lie product correspond- 
ing to two successive mappings; mathematically we wish to concatenate the 
two Lie products into one: this is the same as composition of the transfer 
maps. Treatment of this problem is the primary goal of this paper. One may 
visualize this, in a particle accelerator, as a means of finding the particular 
Lie product for the combined effect of two successive beamline elements 
knowing each separately. This is useful in a variety of calculations. For ex- 
a:nple, in a single pass system, one can find the combined aberrations of a 
complete system in terms of the aberrations of its components. Also, when 
tracking a particle through many turns in a circular accelerator, a great 
saving in computation time will be realized if many magnetic beamline el- 
ements are lumped together as one. Finally, there is an extensive array of 
analytical tools [8] for analyzing the full one-turn map. 
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We shall not concern ourselves in this paper with the generation of the 
original Lie product from the Hamiltonian; that is treated in another pa- 
per [12]. 

4 . 1 . 1  DEFINITIONS AND TERMINOLOGY 

It is shown in another paper [12] that the transfer map describing the 
time evolution of a Hamiltonian system may be represented as a factored 
product of Lie transformations. Let the transfer map A4 send any point in 
phase space z to another 5 via the relation 

5 = A/I ~l~=z, (1.1) 

where ~ = ( q l , P l , . . . , q i , P t )  are the 21 phase space variables, and z is a 
21-tuple of values in phase space. Suppose we have a known solution to 
the time evolution for the orbit through a particular point in phase space. 
This solution will be called the central orbit. Then, with a suitable choice 
of coordinates, .£4 may be represented in the neighborhood of the central 
orbit in the form 

A4 = e:A : e: f2:e :fa: . . . (1.2) 

Here, fn is a polynomial homogeneous of order n in the phase space vari- 
ables. The Lze operator :f: associated with f is defined by its action on 
another function g on phase space, 

def  
:f: g = [f,g]. (1.3) 

Here [,] denotes the Poisson bracket. The exponential of a Lie operator is 
defined by the familiar Taylor series for the exponential, 

: f?  :f:3 
e j '  = z + : / :  + 7F., + ' "  (1.4) 

The exponential of a Lie operator is called a Lie transformation. A Lie 
transformation e:f~: corresponding to a homogeneous nth-order polynomial 
is called an nta-order transformation, and the representation of A/l as (1.2) 
is called the standard faclorization. As shown in [12], the Lie product (1.2) 
acting on phase space is equivalent to a Taylor series. It should be pointed 
out that not all maps can be put in the form (1.2); some will require a 
second second-order transformation, see [12] or [3]. In general we use (1.2) 
metaphorically. 

A Lie algebra is a vector space with a multiplication operation that 
satisfies linearity, 

[ a f + b g ,  h] = a[ f ,h]+b[g,h]  and [f, ag+bh]  = a[ f ,a]+b[ f ,h] ,  (1.5) 

antisymmetry, 
If, g] = -[g,  y], (1.6) 
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and the Jacobi identity, 

[f, [g, hi] + [g, [h, f]] + [h, [f, g]] = 0. (1.7) 

There are two primary Lie algebras we use. One is the set of functions on 
phase space S, of which ~ may be thought a member, with the multiplica- 
tion operation being a Poisson bracket. The other is the set of Lie operators 
S* with the multiplication operation being the commutator. There is a ho- 
momorphism, or multiplication-preserving map, between these two spaces, 
called 'Ad'. Because of this homomorphism, these spaces may be thought 
of interchangeably, and the distinction will not be made henceforth. 

The product (1.2) maps S into itself in the following fashion. First, note 
that the order of the Poisson bracket of two homogenous polynomials is 
the sum of their respective orders, minus two. That  is, the Poisson bracket 
[fn, gin] is homogenous of order n + m - 2 .  From this we may anticipate the 
resultant order of applying a Lie transformation of a certain order. The ith 
term in the series (1.4) is : f : / i  applied to the previous term. This means 

a second-order Lie transformation e:f2: is a linear transformation because 
each application of :f2: leaves the order of its argument unchanged. By 
contrast, a third-order transformation e:f3: is non-linear, each application 
of :f3: increasing the order of its argument by one; a fourth-order tranfor- 
mation e:f4: is also nonlinear, increasing the order of its argument by two 
at each application of the operator, and so on. A first-order transformation 
e:fl:, is a special case. Since :fl: decreases by one the order of its argu- 
ment, the transformation e:fl: applied to a polynomial results, in general, 
in terms of all orders down through a constant. In particular, if it acts on 
the phase space functions ~, it will introduce constant terms. These first- 
order transformations are the result of inhomogeneities in the Hamiltonian, 
and have the effect of mapping the central orbit onto some other orbit. 

4.1.2 T H E  TASK OF CONCATENATION 

Suppose now that we have two maps At[ and Af defined by 

A4 = e:fl:e:f2:e:f3:... 

Af = e:gl:e:g2:e:93:-.-, (1.8) 

and we wish to join these into a single map 79, 

79 = A4Af. (1.9) 

We would like to know how to find the factored form of 79, i.e. the h such 
that 

79 = e:hl:e:h2:e :h3:... (1.10) 

In computing this, the number of terms is important. From a practical 
standpoint, we must truncate each of the products A4 and Af at a certain 



70 Liam M. Healy and Alex J. Dragt 

order N. It is reasonable to truncate the products 7) at that same value of 
N.  The concatenation problem (1.8-1.10) can then be stated compactly: 
for a given N,  and polynomials f l , . . .  , f N  and g l , . . .  ,gN,  we wish to find 
the polynomials h i , . . . ,  hN such that 

e:ht:e:h2:e:ha: . . .  e:hN: ~ e:fl:e:f2:e:fa: . . .  e:fN: e:ga :e:g2:e:ga: . . .  e:gN:. 
(1.11) 

The symbol ' ~ '  means equivalent through a certain order (in this case N); it 
will be explained rigorously later. In combining the polynomials, however, 
higher-order terms will be produced, as we shall see. Furthermore, the 
presence of first-order terms in the product for one map will combine with 
any given term of the other product to produce an effect of lower order 
in the resultant concatenation. These considerations are addressed in the 
next Section. 

4.2 Ideal structure of the Lie algebra 

For most realistic maps, the Lie product (1.2) will be infinite. That  is, there 
is no n for which fi - 0 for i _> n. It is of course not practical to deal with 
an infinite number of terms, so we choose an order at which to truncate the 
product. This entails making an approximation. This approach is valid in 
many real physical situations. The Hamiltonian is analytic, so all solutions 
are analytic in the inital conditions. Therefore, any transfer map is analytic 
(see [14] chapter 10). We must find a standard by which we can replace a 
given Poisson bracket by an arbitrary quantity (perhaps zero) if we feel it is 
"too small," and we must be able to do so consistently. It is crucial not only 
for derivation of the concatenation formula, but also for calculation of the 
factored Lie transformation product (1.2) from the Hamiltonian (see [12]). 
The procedure is divided into two parts: the homogeneous case, where 
n ~ 2 and m _> 2, and the inhomogeneous, where n = 1 or m = 1. 
Those not interested in the mathematical underpinnings may without loss 
of continuity skip to the last paragraph of this Section. 

4.2.1 HOMOGENEOUS PRODUCTS 

The presumption of the Lie transformation product (1.2) is that the cor- 
responding Taylor series is convergent (see [12]). Since we are truncating 
this product, we want the remainder term that is omitted to be so small 
that it can be safely dropped. In order to do this, we take the values of 
each of the phase space variables to be small so that sufficiently high orders 
may be ignored. Specifically, let each of the phase space variables carry the 
small factor 6, so that powers of 6 count the order of these variables. Poly- 
nomials homogeneous of order n have a factor sn, and will be said to have 
~-rank n. 
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Since 6 is small we may, when taking Poisson brackets, neglect terms 
with &rank equal to or greater than some specified value N. For example, 
if we choose N = 6, then the Poisson bracket [f4,gs] may be ignored since 
it is of order 7. We presently shall give this process some rigor; before doing 
so however, it is necessary to introduce some definitions. In the mathemat-  
ical definitions that  follow, S stands for an arbitrary Lie algebra and not 
necessarily the Poisson bracket Lie algebra of phase space functions. 

We wish to divide up S by order, consistent with the Lie algebra. To do 
this, we need the concepts of subalgebra and ideal. A subset S' C S is a 
subalgebra if 1 [S', S'] C S', where [S', S'] is the image of the Poisson bracket 
restricted to S'. A subset S' C S is an ideal if IS', S] C S'. That  is, for 
d E S', s E S, then Is', s] E S'. Clearly, an ideal is also a subalgebra. Ideals 
will play a critical role in the approximation process by way of quotient 
algebras. 

Approximation is made by doing computations in terms of a quotient 
algebra, which can be defined for any ideal. The ideal plays the role of the 
remainder, the part  that  is ignored, and the quotient algebra is the original 
algebra with "elements approximately the same" identified. Specifically, let 
I be an ideal in the Lie algebra S. Now define the quotient algebra S/I to 
be the set of equivalence classes given by the equivalence relation 

s l ~ s 2  if s l = s 2 + i  for some i 6 I .  (2.1) 

We denote these classes by s+I, where s E S. Since an ideal is a subalgebra, 
S/I is a Lie algebra with the rules 

(81 + 1) + (82 + 1) = (81 + ~2) + I (2.2) 

C(Sl+I ) -cs l+I  for c e R  (2.3) 

[81 + 1,82 q- I] = [81,82] "4- I .  (2.4) 

These rules are easily seen to be consistent. If il, i2 E I are arbitrary, the 
left side of the first rule (2.2) is 

(8, + il) + (82 + i2) = (81 + s2) + (i, + i2) e (81 + s2) + 1, (2.5) 

since I is a vector subspace of S . A similar argument holds for the second 
rule. The left side of the third rule (2.4) is 

[81 + il ,  S2 + i2] = [81, S2] + [Sl, i21 + [il, S2] + [il, i2]. (2.6) 

1The notation [X, Y] where X and Y are sets means the set 

{[~,v] I • E x , v  E Y}. 
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From the definition of an ideal, we see that  the consistency of the third 
rule is upheld. 

Now we address ourselves to the question of the origin of the ideals 
for the approximation. They come from a percolation, a telescoped set of 
subspaces whose union fill the whole space and whose Lie bracket fulfills a 
certain property: for each non-negative integer i, there is a subspace S(i) 
such that  

S (i) D S  (j) for i < j  (2.7) 

s(°)  = s (2.8) 

[S (i), S (j)] C S (i+j) . (2.9) 

I f S  is graded, that  is, it is the direct sum of subspaces Si (i = 0, 1 , . . .  ,oo) 
and [S,, Sj] C Si+j, then it is percolated by the rule 

S(, ) dJ 0 Sj. (2.10) 
j_>i 

In our application, these subspaces will be polynomials of a certain b-rank 
or higher. 

It is clear from the above definition that  each of the members S(0 of a 
percolation is an ideal. Let s(0 E S (i), s E S = S (°). Then [s, s( i)] E S(0, 
and also with the arguments in the reverse order, [s(1),s] E S(0. Since s 
and s (i) were arbitrary within their respective sets, S(i) is an ideal in S .  

Let us now apply this to our particular problem. Up to now in this 
Section, we have let S stand for an arbitrary Lie algebra. We now restrict 
the definition of S so that  it is the space of all functions on phase space 
that  have power series expansions and whose power-series expansion has 
no first-order or constant term. Grade it with subspaces of polynomials 
homogeneous in a particular order of the phase space variables: let Si be 
the set of all homogeneous polynomials of order i + 2, for i > 0. One 
may easily verify that  this is a grading on S under the Poisson bracket. A 
particular polynomial that  belongs to the subspace S, has b-rank i + 2. 

Given this grading {S, } by polynomial order, we have the corresponding 
percolation given by (2.10). This gives us a sequencs of ideals S (i), and a 
sequence of quotient algebras S/S(') .  The ideal S(') consists of all power 
series with coefficients zero for all terms of order less than i+  2. The quotient 
algebra Q(i) de f S/s(i+I) is a rigorous way of describing the algebra S with 
the approximation of "neglecting terms of order i + 3 and greater." 

The computer  code MArtYLIE 3.0 [2] [6] [7], designed to perform beam 
dynamics calculations for accelerator physics, has no first-order polynomi- 
als and performs computat ions through fourth order. Speaking in terms 
of the formal algebra introduced above, it is computing in the Lie algebra 
Q(~). In this algebra, one must  say, for example, [f3,g3] = h4 for some 
specific h4, but  it makes the approximation [f3, 94] ~ 0. In the algebra Q(2) 
the values of some Poisson brackets will be in S 3. Since we are working in 
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the quotient algebra, we may choose any member of S 3. When performing 
the computation by hand, we will usually choose zero. When working nu- 
merically in a computer code (the tracking part of MARYLIE), the choice of 
some other members may be computationally advantageous. 

The homomorphism Ad carries all these definitions to the adjoint algebra 
S* . The subalgebras S *(i) are the spaces of all Lie operators that  are 
of order i + 2, i.e., are images of Si under Ad, and S *(i) are the direct 
sum ~3j>iS~ or the image of S (i) under Ad. The S*(0 are ideals, so the 

Q.(i) = S . / S , ( i + I )  are quotient algebras. Thus the adjoint algebra has the 
same ideal and quotient structure as the underlying algebra, as we expect, 
and commutators of Lie operators are set to zero (or to an arbitrary value) 
when the Poisson bracket of the corresponding polynomials would be of 
too high an order. 

These quotient Lie algebras give rise to quotient groups in the group of 
all symplectic maps on phase space. While possibly containing terms of all 
orders, these maps are accurate only through order i +  1 for Q(i). Within the 
group, it will be possible to either truncate and then multiply, or multiply 
and then truncate, with equal validity. Specifically, let G be the group of 
symplectic maps on phase space and G (i) (i = 0, 1, . . . )  be the subgroup 
of these maps that has a power series expansion consisting of terms only 
order i + 1 and higher, plus the identity. Then G(') is a normal or invariant 
subgroup of G, that is, ghg -1 E G (i), Vg E G, h E G (i). The quotient group 
H (i) = G / G  (i+l) is defined as the equivalence classes given by gl ~ g2 if 
glg~ 1 = h where h E G (i). That  is, two elements are equivalent if the power 
series expansions of their associated symplectic maps differ only by terms 
of order i +  1 and higher. That  this is in fact a group may be easily verified. 
These groups H (i) are associated with the algebras Q*('). 

4.2.2 INHOMOGENEOUS PRODUCTS 

If a first-order transformation is present in the product (1.2), the truncation 
by &rank given above will not be correct because the &rank will be lowered 
by the first-order term. Suppose we keep terms only through &rank 4, 
and discard anything higher. Then forming, for instance, [fl, [g3, h4]] would 
yield the wrong answer: we may take [g3, hal as zero because the 6-rank 
is 5, and so our overall answer would be zero. But this is not correct; 
even though the inner Poisson bracket is 6-rank 5, the Poisson bracket 
with f l  subsequently lowers the &rank to an acceptable 4. Clearly, the 
subspaces described in the last Section are no longer subalgebras when a 
first-order term is present and we must reformulate their description for 
correct computations in this case. 

The correct t reatment of first-order terms becomes evident when we con- 
sider their physical origin. As is shown in [12], the first-order transformation 
is proportional to the first-order term in the Hamiltonian, which in turn is 
proportional to an error, such as an alignment or powering error in an ac- 
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celerator beamline element. It is hoped that these are small; consequently, 
the first-order transformation will also be small. To be specific, say that a 
factor of the small parameter e multiplies each first-order polynomial. We 
may now consider how this changes the analysis of the algebra and the 
corresponding group given in the previous Section. 

The space S must be expanded, and the set {S/} given a new member. 
Let S now stand for the set of all functions on phase space that have power- 
series expansions; we no longer require that  the first-order term be zero. We 
shMl still ignore constant terms since they play no role in the Lie algebra. 
Let S-a  be the space of first-order polynomials. The spaces {Ss],=-l,0,1,. 
are still a grading. However, we cannot construct a corresponding percola- 
tion according to (2.10) because we now have a negative i. Thus the S (/) 
are no longer ideals and we cannot form the quotient algebra. There is a 
corresponding destruction of the normal subgroups and quotient groups of 
symplectic maps. 

Instead of using this grading, let us search for another way to create a 
percolation, and thus obtain a sequence of ideals and a sequence of quotient 
Mgebras that will correctly reflect the physics of the perturbation calcula- 
tion. First, let the e-rank of a polynomial mean the lowest order in e for 
that  polynomial. Define a second index j ,  j -- 0, 1, . . . ,  on the S/ that is 
equal to the e-rank. Thus Sir is a subset of S that is homogeneous of order 
i + 2 in the phase space coordinates, and homogeneous of order j in e. A 
polynomial has 6-rank i and e-rank j if it belongs to Sir. The only combi- 
nation of i and j within these ranges that is prohibited is i = - 1 ,  j = 0, the 
smallness requirement on first-order terms discussed above. The spaces Sis 
are a finer grading of the spaces Ss graded by 6-rank; it is easy to see that 

[Sir, Skz] c_ Si+k, +z. (2.11) 

We now seek a percolation constructed from the S,j. 
A percolation that  satisfies the requirements may be formed by creating 

a special function of the two indices i and j .  Consider the set of allowed 
index pairs 

][2. def {- -1 ,0 ,1 , . . .}  X {0, 1 , . . . } - -  {(--1,0)]. (2.12) 

Let a truncalzon criterion u be any function into the non-negative integers 
u : ][2, ~ ][+ with the property 

+ <_ + k , j  + t). (2.13) 

Now define the sequence of subspaces S (i), i E Z + as the direct sum of all 
Sjk whose value of u is at least i: 

s(') (9 (2.14) 
~(j,k)>i 
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This sequence is a percolation, which may be shown in the following man- 
ner. Clearly, the first and second properties of a percolation are satisfied. 
To show the third (2.9), let Si,j, be an arbitrary element of S (~(i,j)) and 
Sk,z, be an arbitrary element of S (~(k,0). Then 

Si,j, E S (v(i'j)) :=~ u(i ' , j ' )  >_ u(i , j )  (2.15) 

Sk,z, 6 S (v(k'0) =~ u(k' , l ' )  > u(k,l).  (2.16) 

The Poisson bracket of these two polynomial spaces is 

[Si,~,,S~,t,] c_ &,+k,,~,+z, c_s (~(v+k''~'+e)) 
S (v(i''jt)+t/(k''l')) C S (v(i'j)+v(k'l)), (2.17) 

by the truncation criterion (2.13) and the first property of a percolation 
(2.7). Since Si,j, and Sk,t, were arbitrary in their respective subspaces, we 
may conclude the third property of a percolation holds, 

[S('~) , S (m)] C_ S(n+m) , (2.18) 

for values n, m in the image of u. By implication, therefore, the S(i) as 
defined in (2.14) are ideals. This sequence of ideals may be used to define 
a sequence of quotient algebras. 

Note that  we have determined a satisfactory set of ideals with u unde- 
termined except for the condition (2.13). We now must consider specific 
truncation criteria. Two possibilities are u(i, j )  = rain(i, j )  and u = a i+ f l j  
where a,/3 E Z + • The reader may verify that  these two indeed satisfy (2.13). 
The former case corresponds to keeping all terms except those whose 6- 
rank and whose e-rank each exceed a certain value. The latter excludes 
those whose weighted sum exceeds a certain value. This form of t, satisfies 
a stricter condition than (2.13), in fact, u(i , j )  + u(k,l) = u(i + k , j  + l), 
and so we have a grading S~(,,j), which may form a percolation by (2.10). 
This percolation is the same as the one defined by (2.14). 

Normal subgroups G("(i,J)) of the group of inhomogeneous symplectic 
maps G may be defined by analogy to that  of the homogeneous group (see 

Section 4.2.1). The quotient group H (u(iJ)) dej G/G(u(i,j) ) is the group of 
transformations that will actually be used in computations. 

With all the formalism aside, we must choose a particular truncation 
criterion with which to proceed with the actual computations. The one 
that makes the most intuitive sense is u(i , j )  = i + j .  This will be called the 
total rank. In terms of 6-rank and e-rank, this criterion says that  we restrict 
terms to 0(6)  + O(¢) < N for some value of N.  Physically, this is a realistic 
criterion, because it means that  the deviation in central orbit caused by 
the error is of the same order as the perturbation around the central orbit. 
Thus, we can expect the same accuracy in the result. For example, the 
misalignment of a magnetic element in an accelerator should not typically 
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be of greater magnitude than the spread in position of particles within the 
beam. It is also possible to imagine the case where a different truncation 
criterion needs to be used; for instance, a weighted sum of the exponents 
as mentioned above may be appropriate. The calculations in the remainder 
of this paper, however, are done with the total rank criterion. 

4.3 Lie algebraic tools 

With the algebraic formalism established, we now turn to the problem of 
solving the concatentation problem (1.11). There are two important tools 
used in this calculation that are presented in this Section. At the moment, 
it is useful to introduce some notation. It will become necessary to label a 
polynomial by its total rank as well as its ~i-rank. In this case, a superscript 
with the total rank in parenthesis will be placed on the polynomial, e.g., 
k (4). Furthermore, let the function r give tile total rank of a polynomial or 

operator, so that, e.g., r(k (4)) = 4. In Section 4.4.2 this notation will be 
generalized slightly; the superscript will identify a family of terms of which 
at least one is of that total rank, none are lower, and some may be higher. 

4.3.1 T H E  EXCHANGE RULE 

The first tool used in the computation is the exchange rule. This allows us to 
rewrite two Lie transformations in succession such that one transformation 
occurs in the opposite position, 

e:f:e:g: = e:J:e :f: (3.1) 

o r  

e:f:e  :g: -- e:g:e :k:, (3.2) 

where the polynomials are not necessarily homogeneous. The function j in 
(3.1) is given by 

j -- e: f:g (3.3) 

and the function k in (3.2) is given by 

k = e : - g : f .  (3.4) 

For proofs, see [4] (Theorem 3), [2], or [3] (equation 5.52). 
It is also possible to bring a Lie transformation inside a function; that is, 

e : / :g(( )  = g(e:/:~), (3.5) 

for arbitrary functions f ,  g. This is proved in [3] and in [2]. In combination 
with the exchange rule, we have a powerful result because it means that 
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an operator can be moved to the left or right of another operator by trans- 
forming that  operator's argument. This is especially useful where the first 
operator is of 6-rank 2, in which case it produces a linear transformation 
of the other operator's argument. 

4.3.2 COMBINING TRANSFORMATIONS 
AND FACTORING A SINGLE TRANSFORMATION 

The other useful tool has two parts. First, we shall need to combine two (or 
more) transformations into a single exponent. This is accomplished using 
the Baker-Campbel]-Hausdorff (BCH) formula.. The BCH theorem says that 
the logarithm of the product of two exponentials is in the Lie algebra; the 
formula gives the explicit form. That is, if 

e:f:e:g: = e :h:, (3.6) 

then h is in the Lie algebra spanned by f and g. The specific formula 
through three brackets (see [15] or [9]) is 

1 1 f 1 . h = f + g + ~[f, g] + i~[ , [f, g]] + ~[g,  [g, f]] - ~ [ f ,  [g, [f, g]]] + " "  (3.7) 

The second part is to rewrite a single transformation as a product of 
transformations factored in the proper order, 

e:Jl + j2 + " "  + jn: = e:kl:e:k2: . . .e:km:.  (3.8) 

We do not know yet what m is, except that  it will be at least n, and of 
course it will be no greater than N. This shall be called the separatzon 
procedure. It consists of two steps; we first repeatedly use the BCH formula 
to combine the k, represented only symbolically at this point, into a single 
exponent, then use a general method to find the k in terms of the j .  

Consider now the general problem of Lie func twn  inversion; we have a 
set of functions F, of unknown polynomials ki; we wish to solve the set k, 
in terms of the known values ji of F i. That  is, 

Ji = F i ( k l , . . . , k m )  for i = l , . . . , N .  (3.9) 

In our particular application, the functions F, come from multiple applica- 
tion of the BCH formula; we use it to express the ji in terms of the ki and 
their Poisson brackets. 

The method of inversion presented here requires only that the functions 
F{ satisfy two properties. The first is that  each function Fi has the term k, 
alone, not in a Poisson bracket; for instance F3(k l , . . .  , kin) -- k3"]-[kl, k4]n t- 
• ... The second is that  the e-rank of both j l  and J2 be at least one, z.e., 
7-(jl) > 2 and 7"(j2) >_ 3. The requirement on j l  is simply the c-rank 
requirement embodied in (2.12) and insures that the total rank is never 
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lowered. The requirement on j2 insures that no equation will be implicit in 
any of the remainder terms to be introduced, because the only possibility 
for an operator :ji: to leave the total rank of its argument unchanged is if 
the 5-rank is altered, i.e., when i = 1. A consequence of these assumptions 
is that  r (k i )  = r ( j i ) .  

We need keep only terms with a specific number of brackets in the ex- 
def 

pressions for F~. If the smallest total rank of the j ,  t = mini{v(ji)}, is at 
least 3, then the necessity of retaining each term is governed by the total 
rank criterion. One then keeps only terms of I brackets where 

l( t  - 2) + t < N. (3.10) 

On the other hand, if the smallest total rank is 2, the necessity is governed 
separately by the total rank criterion (N - 3 brackets) and the $-rank from 
applying the :jl: (N - 1 brackets), so the condition is 

l _< 2N - 4. (3.11) 

The inversion is accomplished iteratively on the total rank. The first step 
is to assume that ki is j i  plus a remainder term of the same total rank, 

_(~U,)) (3.12) kl "-'+ j i  + "i 

where r is a currently-unknown remainder term indexed by the 5-rank and 
the total rank. Formally, we make this substitution in the expressions (3.9); 
by the first assumption above about the Fi,  both sides of each equation will 
have a term j i ,  which may be eliminated. In the subsequent steps of the 
iteration, we may solve for the remainder term in the following way. Make 
a substitution for r} t) such that all terms of total rank t are cancelled off 
by setting it equal to the negative of all the other terms of that total rank 
in the expression, plus a remainder term of the next higher total rank; 

_(,+i) 
__, _w,¢ , )  + , . ,  , (3.13) 

where W (t) consists of all terms of total rank t except j i  and the remainder 
term. Thus all terms of total rank t have been eliminated, and there are 
only terms of total rank t + 1 and higher. We continue this iteration until 
the only terms that remain exceed the total rank cut-off N. 

We now may find the answer by going back to the original substitution 
(3.12) and making the successive replacements (3.13); this gives the answer 

N 

k, = j, + E -W(0"  (3.14) 
t=r(j , )  

It is tempting say that  this can be obtained immediately without iteration, 
but keep in mirLd that  W is not known at the current step until the last 
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step has been solved; in general, that  last step will have introduced new 
terms of the current total rank. 

As it happens, the first remainder solution r~ 0 will yield the trivial answer 

W (0 = 0 unless e = 0 for at least two non-zero terms jm , jn ,  with m, n > 3. 
This result is obtained in the exchange-and-seperate method for moving 
the first-order term (Section 4.4.2), where all j at each step have the same 
total rank. On the other hand, the solution of the subsequent remainders 
r~ t), t > i, will yield the trivial answer W (t) = 0 unless e >_ 1 for some j .  
This is obtained in moving higher-order terms (Section 4.4.4). 

The solution to (3.8) may be obtained once and for all for a given N using 
this method by assuming the lowest possible total ranks on each of the j .  
Then at any step, one may use this result, discarding the terms whose total 
rank exceeds N or which involve a j that is zero. This has been done for 
r ( j )  >_ 3 and N = 6; the result is given in Appendix 4.C. Examples of the 
computation itself for less general cases are given in Sections 4.4.2 and 4.4.4. 

4.4 Computation method 
for the concatenation formula 

Selective use of the tools given will now allow us to acheive our goal of solv- 
ing (1.11). The general idea is to move to the left all terms of lower 5-rank 
than their immediate left-hand neighbor. By "move to the left," we really 
mean to rewrite a pair of transformations in the standard factorization: 

e:an:e:bm : = e:kl:e:k2:e:kz: . . .  e:kN :, (4.1) 

where n _> m. Initially on the right side of (1.11) there is only one pair 

of transformations that  satisfies this condition, e:fN:e:gl:. Once this is put 
into the standard factorization, other wrongly-ordered transformation pairs 
will occur, and these must be treated in a similar fashion, which will in turn 
give rise to more such pairs and so on. 

The overall plan of attack is organized as follows. Initially, the first- 
order transformation will be moved to the left. This will leave behind many 
second and higher-order transformations, not at all in a suitable order. 
However, all the first-order transformations will be at the extreme left 

except for the intervening e : f  2:, and they may be combined in a simple 
fashion. Now, the second-order transformations may moved to the left and 

e:f2: to the right, leaving third and higher order transformations behind. 
Then the third-order ones may be moved; but, when they get to the left 
they must be combined into a single exponent and then this exponent split 
up by order. Fourth and higher orders are treated in a similar way. When 
this has been done through order N - 1, the Lie transformations will be in 
the proper order. 
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The basic methods for treating pairs of transformations (4.1) are pre- 
sented in the next Section, and the actual procedure for each order m in the 
succeeding Sections. As an alternative to the pairwise treatment of terms 
described above and elaborated below, one may try to combine all the terms 

of the concatenation problem (1.11) except e:f2: and e:g~: at once using 
an expanded version of the combine-and-separate method described in the 
next Section. This has a certain conceptual simplicity, but  it is not practical 
as it would generate an inordinate number of terms for even small N. 

4.4.1 P U T T I N G  A PAIR OF TRANSFORMATIONS 

INTO STANDARD FACTORIZATION 

For the task of putting two successive transformations into standard fac- 
torization (4.1), there are three possibilities. If m -- 2 and r(b2) -- 2, there 
is no choice but  to use the exchange method. If this is not the case, there 
are two choices. 

The exchange-and-separate method uses the exchange rule to write 

e:an:e :bin: -: e:bm:e :e:-bm:an: = e:bm:e :an+:-bm:an + . . . .  , (4.2) 

and then application of the separation procedure on the second transforma- 
tion. Because the transformation e :bin: remains separate on the left, this 
method is not useful for the case m = n. It is advantageous for m = 1 
because all terms in the second transformation have total rank at least 3, 
reducing the number of Poisson brackets required. 

The combine-and-separate method uses the SCH formula to combine the 
terms into a single exponent, 

1 
e:an:e:bm: = e:an +bm "4- ~[an,bm] A- " " : ,  (4.3) 

and then application of the separation procedure on this transformation. 
This method is preferable when m > 1 and necessary when m = n. Note 
that this incarnation of the BCH formula is distinct from that of the sepa- 
ration procedure that produces the functions Fi in (3.9); this is the combi- 
nation of only two terms and changes at each step. 

4.4.2 MOVING THE FIRST-ORDER TERM 

We concentrate initially on the terms f3 through gl of (1.11) and temporar- 
ily ignore the other Lie transformations. That  is, we wish to put 

e :fl:e:f2:e : f3: . . .  e:fN:e :gl: (4.4) 

into standard factorization. This is done successively on each transforma- 
tion; we start  by putting the right-hand pair with f g  and gl into standard 
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factorization. Then, with a first-order term on the left, we put  the next pair 
with f N - 1  into standard factorization, and so on until all the first-order 
terms are to the left of all terms of third order and higher. At each step, 
we have a pair of terms involving an f ,  and some first-order term that will 
be rewritten in the standard factorization, 

e:f'~:e :bl: = e:kl:e:k2:e :k3: . . .  . (4.5) 

Although it is possible to use the combine-and-separate method instead 
of the exchange-and-separate, it is not practical. With r(bl)  = 2, there are 
many more terms in the BCH series that need to be retained, because no 
total rank 2 term occurs in the latter method; it is exactly the condition 
(3.11) versus (3.10). For large N, there are an enormous number of terms, 
so it is more practical to use the exchange-and-separate method for the 
first-order transformations. 

In order to solve (4.5) for n > 3, we first make the first-order term specific 
and use the exchange rule to write 

e:fn:e:bl: = e:bl:e:e:-bl: fn:  

= e:bl :e : f ,  + [ - b , , I , ]  + - . . + : - b , :  "-1  I n / ( -  - 1)!:. 

(4.6) 

Note that this second transformation has only a finite number of terms in 
it, and of each order from n down through 1, because of the order-reducing 
property of a first-order Lie operator. Rewriting each of these terms as 

d e f  
j,~_~ = ~ : - b l :  ~ fn for 0 < i < n -  1, we have 

• f,~" "bl" e:bl:e:jl + j2 + " "  + jn: (4.7) e"  "e"  " - -  

W e  may now apply the separation procedure to put the right-hand side 
of this equation into the standard factorization (3.8), which we can then 
substitute into (4.7) to get 

e:fn:e :bl: = e:b l :e:k l :e :k2: . . . e  :km:. (4.8) 

The next step is to combine the two adjacent first-order transformations 
into a single exponent. This is a trivial application of the BCH formula; 
because they are first-order terms, their Poisson brackets are constants 
and may therefore be discarded. Thus we simply put  the sum of the two 
first-order terms into a single exponent: 

e:fn:e:bl: = e :bl + kl:e:k2: . . ,  e :k'n:. (4.9) 

Each of the Lie transformation pairs that is put into standard fa.ctoriza- 

tion according to (4.5) produces a set of polynomials {k~ t)} which we label 
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with a superscript that  superficially indicates the total rank. If i < t, it is 
the total rank. If i > t, the total rank is at least i, but the term was pro- 
duced in the same step as the total rank ¢ terms. At the first step involving 
f g ,  all the polynomials produced will be of total rank N, at the next they 
will be of total rank N - 1, and at the step i mostly of total rank N - i  + 1 
but some may be higher. 

The first-order terms are accumulated at each step according to (4.9). 
On the first step, bl=gl,  and at each step the particular kl is added. Thus 
the final first-order term is gl plus the sum of all the kl terms, 

a l  .1 + (4.10) 
t 

When all the terms of the type (4.5) in (4.4) have been treated in suc- 
cession we will end up with the result 

e:f l :e: f2:e: f3: . . .e: fN:e:gl:  = e:/l:e:f~:e:G1: 
.b(3) . .b(3) .  .k(3) . 

xe'~2 "e'~3 " . . .e"  g - 1 . . . .  
(. . . . . k ( N - 1 ) . . ] ¢ ( N ) .  

xe:k- N-l):  e" N-1 "e" 2 - . . .  

x e:k(NN-)l :e :k(N): , (4.11) 

with the first-order terms to the left of all third- and higher-order terms. It 
should be noted that  there will be no k~ ) term for l _< N - 1 because such 

a term can be formed only by taking nested Poisson brackets solely of j}0, 
up to the maximum number of brackets that the total rank criterion will 
allow; the Poisson bracket [j}0,j}0] though, is zero. 

In order to put the right-hand side of (4.11) into standard factorization, 

we need to move e:f2: to the right ofe  :GI:. For this we just use the exchange 
rule as described in the next Section, and then the two adjacent first- 
order transformations may be combined by adding their exponents. The 
higher-order terms may be put into standard factorization by the procedure 

described in Section 4.4.4. Because the second-order terms e:k~ ~): have total 
rank higher than two, it is possible to move and combine them using the 
rules for higher-order transformations instead of using the exchange rule. 

To see how this works in practice, let us look at a simple example. Sup- 
pose we take N - 4, and consider the part of the problem where we will 
move the first-order term to the left of the third-order term. That  is, we 
will write 

e:fa:e :gl: = e:kl:e:k2:e:ka:e :k4:, (4.12) 

and determine the polynomials kn. Following the procedure above, we write 

e:f3:e:gl: _ e:gl:e:j~3) + j~3) + j(a):, (4.13) 
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with the j(3) given by the exchange rule, 

1 j~3) = ~[gl, [gl, f3]] 

j~a) : - [gl , f3]  

(4.14) 

We now break apart the exponent into separate transformations. The 
answer may be obtained from Appendix 4.C, or we may perform the sep- 
aration procedure ourselves. Since each of these terms is total rank 3 and 
we are keeping through N - 4, we will need the BCIt formula (3.7) only 
through the one-Poisson-bracket term, that is, equation (3.9) is explicitly 
in this case, 

j~3) F %(3)k(3)k(3) k(3)) k~3) 
- -  21, 1 , 2 , 3 , - -  "~- 

,,.(3)¢3) 
--" 31,t~i ' 2 ' 3 ~ --" -~  

b 0 "-- ~'41,a;I ' ~ 2  ' : "31- 

 tk?),kl 3)1 
rt.(3) t.(3)1 
t n ' l  , '~3 J 

1 rk(3) k(3)l 1 rk(3) k(43)] 2L 2 ' 3 ,J'*'lt-2t 1 , 

1 [L,(3) b(3)l (~t .t,.~)(A.1K'~ 
L"2 ''4 J" 

Making the initial substitution k~ 3) --~ j~3) + r~3) (3.12) and then the next 
substitution r~ 3) ~ - W  (3) +r~ 4) (3.13) yields the result W (3) = 0 (because 
all Poisson bracket terms are of higher order than 3) and the residual 
equations 

, r~(3) ~(3)1 , [r~4), 0 ---- r ~  4) -4- ~l, J1 , J 2  J "~ 5 

1 rZ(3) Z(3)1 1 [ r~4 ) ,  0 = r ( 4 )  "4- ~L]I  , J 3  J -]- 

l r ~ ( 3 )  ,;(3)1 1 [ r~4 ) ,  
0 : r ( 4 ) +  ~1,12 , J 3  J +  

. 4 _ 1 r . ( 3 )  (4) ,  1 [ r ( 4 )  r i 4 ) ]  
5 U I  , r  4 J - l - ~ L  I , 

r~(3) ~(4)i ~ [r~4), 0 = r (4)%~.  ,-4 J% 

after cancelling off the j(3). We have 
because there is no j(3). 

Looking only at terms of total rank 
(3 .13) ,  we find 

,r.(3) (4), ~ rr(4) r~4)] j ( 3 ) ] + ~ p l  ,r2 J+~L 1 , 
r~(3) . (4 h 1 r~(4) ~(4)1 J3 (3)] + ~ m  , - 3  J + ~ t - i  , - 3  , 

r,~(3) .(4)1 ~ r..(4) ..(4)1 
J3 (3)] + ~ ~2 , ' 3  J + ~t-2  , - 3  J 

r(4)], (4.16) 

made the substitution k (3) --~ r l  4) 

4, and solving for r~ 4) according to 

ri4) _ 1.(3) + ; t  ) - -  - -  ~ t./2 , 

r(44) : 0. (4.17) 

The new remainder term and the three remaining Poisson brackets that 
occur in each of the equations (4.16) are of total rank at least 5. Since 
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our truncation criterion is to drop terms total rank 5 and greater, we may 
discard them. We are thus at the end of the iteration, and we find the 
answer by adding up all the remainders according to (3.14). There was 
only one remainder in this example, so 

k~3) = jr3) lr;(3) ;(3), -- ~LJ1 , J2  J 
k ? ) :  l r(3) 

- -  [ [ J 1  , 3 3  J 

k(3) -- J3 ( 3 ) -  !r;(3)~tJ2 ,J (3)13 J 

k (3) = 0. 

Substituting back into (4.13), we conclude 

e:f3:e:gl: 

(4.18) 

: e:gl:e:J? ) -  
xe : J~  3) -- ~[.]11 r .(3),33"(3)l"J'e :']3"(3) _ ½ [j~3), j3(3)]: 

_ -  e'g"e'~" " " l [g~ , [g , , f3 ] ] -  ~[½[g~,[gi,f3]],-[m,/3]]:  

Xe:--[gl, f3] -- ½[½[gl, [gl, f3]], f3]:e:f3 -- ½[--[gl, f3], f3]:. 

(4.10) 

It is then possible to simplify the nested Poisson brackets. 
This is a very simple example, and it may seem that it is easily solved 

intuitively, without the formalism. This is so, but for higher orders the 
formalism is necessary. Appendix 4.A describes some of the Lie algebraic 
manipulation that  can keep the calculation under control. This example 
is unfortunately too simple to show that terms k~ n) with i > n do occur, 
which only happens for N > 5. 

4 . 4 . 3  MOVING SECOND-ORDER TERMS 

Moving the second-order terms in (4.11) to the right of the first-order terms 
or moving them to the left of the higher-order terms is a pure application 
of the exchange rule. Since a second-order transformation is just a linear 
transformation on phase space, one can effectively rewrite a pair of Lie 
transformations involving a second-order transformation as 

e:a(~):e :b2: - e:b2:e:e:-b2:a( ~): -- e:b2:e :a(e:-b2:~): (4.20) 

Therefore, one would move the second-order terms by transforming the 
intervening operators'  arguments. For instance, the first three terms on the 
right-hand side of (4.11) are rewritten 

e:fl:e:e:f2:gl:e:f2: = e:fl + e:f2:gl:e:f2: = e:fl + gT:e:f2: ' (4.21) 
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where here gT is defined as the transformed polynomial 

gT(~) = e: f2:gl(~)  = gl(e: f2:~) .  (4.22) 

By so moving all second-order transformations to the right of first-order 
transformations and to the left of all higher-order ones, we will then be left 
with all second order terms together in the proper &rank sequence. From 
an aesthetic point of view, it is now desirable to combine these second-order 
terms into a single second-order term. From a practical point of view, how- 
ever, this is not necessary because the linear transformations are all kept 
as matrices when doing numerical computations and matrix multiplication 
is computationally simple. This is a good thing, because it is not possible 

in general to combine all these terms. There are two terms, e:f2: and e :g2:, 
that are of total rank 2, which means that any BCH series involving it does 
not terminate. On the other hand, all the other second-order transforma- 
tions are of total rank 3 and higher, so that application of the BCH formula 
with appropriate truncation according to the total rank criterion will yield 
an answer with a finite number of terms. 

4.4.4 MOVING HIGHER-ORDER TERMS 

Moving transformations of order 3 and higher is essentially the same prob- 
lem mathematically as that of the first-order terms, but  because it is sim- 
pler, and because we need to combine terms of the same order, we use 
the combine-and-separate method rather than the exchange-and-separate 
method. Ignoring the first- and second-order terms, which now have been 
pushed to the left, we may look at the concatenation problem as reformu- 
lating a product of transformations each of third or higher order into the 
standard factorization. Specifically, we look at the problem as putting 

e:f3:e : f 4 : . . .  e : fN: e:g3:e :g4: . . .  e :gN: (4.23) 

into standard factorization. Although there are actually many terms of each 
order 3 and higher resulting from the first-order calculation, knowing this 
solution will allow us to apply it repeatedly to obtain the general solution. 
As with moving the first-order term, we start by moving the term e :g3: 
leftward, ignoring all the other g transformations, then proceed to move 
the term e:g4:, and so on. This process gets successively easier. 

The elemental task in this process is to re-express the two adjacent terms 

e:a'*:e :bin: in the standard factorization. Because now n >_ 3 and m > 3, 
there is no problem with first- or second-order terms recurring. Using the 
combine-and-separate method, the BCH formula is applied to obtain 

• " 1 [ a n , b i n ]  + ' " :  e.an : e :bm : =. e.an "-b bm "b "~ (4.24) 

The combined terms can be any &rank from m through N, although by the 
nature of the Ben formula, only certain ones will appear. After applying 
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the separation procedure, this exponent will be expressed as a product of 
transformations in the standard factorization. In this case, we are solving 
equation (3.8), but with no first- or second-order terms, and perhaps some 
other terms missing as well. 

After a transformation of a given-order is moved to the left, it must 
be combined with the other term of the same 8-rank. In this respect, the 
problem is very different from the first-order case, because there the com- 
bination of the terms of like rank was trivial. Here, the combination once 
again produces a whole menagerie of terms and must be treated in the 
same way as when any other term is encountered. 

Let us consider specifically one of these elemental tasks with N = 6, in 
fact one of combining terms of like 8-rank, that of finding the standard 
factorization for e:f3:e :g3:. Using the BCH formula, we write 

e:f3:e :g3: = exp(f3 + g3 q- ½[fa,g3] q- 1~[f3, [fz,g3]] 

q- ~[g3, [g3, f3]] -- ~[f3,  [g3, If3, g3]]]) 

: e:k3:e:k4:e:ks:e :k6:, (4.25) 

and solve for k. Order by order, the terms combined in the exponent are 

j3 = f a T g 3  
J4 = ½ [f3, g3] 

j5 = ~ [fa, [f3, g3]] + ~[g3, [ga, fa]] 
j6 = -- ~[ fa ,  [g3, [f3, g3]]]. (4.26) 

We now apply the separation procedure. As in Section 4.4.2, we may consult 
Appendix 4.C for the general solution and apply it to this case, or we may 
perform the separation procedure ourselves. Doing the latter, we use the 
BCH formula to find the functions Fi of (3.9), 

e:ka:e:k4:e:ks:e:k6: 
1 1 = e:k3 + k4 + k5 + k6 + 5[k3, k4] + ~[k3, ks] + ~[k3, [k3, k4]]:, (4.27) 

3 ~- 
= 

j5 = 

j6 = 

We make the substitutions 

F 3(k3 ,  k4, k5, k6) - -  k3 

F4(k3, k4, ks, k6) = k4 
Fs(k3, k4, ks, k6) k5 + = ½[k3,k,] 

1 r6(k3, k,, ks, k6) = +  [k3, ks] +  [k3, k,]]. 

k3-  j3+ (2 ) 

k4 --, j4+r~ 4) 

k5 -~ j 5 + r ~  5) 

k6 ~ j 6 + r ~  6). 

(4.28) 

(4.29) 
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and get, after cancelling off the j terms, 

0 = r (3) 

0 ---- r l  4) 

o = +  [j3 + + 

+ [J3 + [J3 +  13), J, + r(:)]]. 

Solving for the r and substituting in (4.29) gives 

k3 = J3 = f 3 + g 3  
1 k4 -- J4 "- ~[13,g3] 

l * • k5 = j5 - ~[J3,J4] 

k 6  - -  

(4.30)  

1 = ~ [1~, [1~, g~]] + ,~[93, [9,, 1~11 - ½11, + g~, ~[ / , ,  g,]] 
j6 - ½ [J3, js] - ~ [j3, [i3, J411 

= -- ~ [f3, [93, [f3, g31]] -- ½ [f3 "4- g3, ~ [f3, [f3, g3]] 
1 -4- ~ [g3, [93, f3]]] -- ~ [f3 -4- 93, [f3 -4- .q3, ~ [f3, g3]]. 

(4.31) 
This is already the complete solution; there is no further need to iterate 
because the total rank of each term equals the 6-rank. 

4.5 Summary 

The transfer map arising from a Hamiltonian flow may be represented, in- 
cluding inhomogeneities, through a given order by a product of Lie transfor- 
mations on phase space factored by order. Two such maps may be combined 
into a single map using the concatenation formula whose derivation is out- 
lined above. In order to calculate the concatenation formula and the Lie 
products, it is necessary that the inhomogeneity be small. How this small- 
ness relates to the smallness of the phase space perturbation is imposed 
in a general way by the algebra; one is then free to choose specifically the 
criterion to be in accord with physical considerations. Here, the criterion 
choosen is that these two quantities count equally and no term beyond a 
certain order N is retained. 

The concatenation formula is accurate through the order computed with- 
out approximation, including feed-down effects from the inhomogeneity. It 
will not produce the same result as when the two transformations are com- 
puted in succession because of effects beyond order N that are lost in 
the concatenation. Thus if these effects are important concatenation is not 
suitable. 

The concatenation formula have been computed and checked through 
N = 6. The result and the details of the symbolic manipulation used are 
given in the Appendices. 
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4.A A basis for the Lie algebra 

The computations described above involve a considerable amount of alge- 
braic manipulation, particularly for computations of higher N. For N ~ 5 
it becomes unfeasible to do these computations by hand, and more prac- 
tical to automate this process. There are several stages where it is useful 
to use symbolic computation. First of all, the BCH formula (3.7) may be 
obtained from references (for example [15]) for the first few terms, but  for 
more terms, it may be necessary to compute them. This can be done sym- 
bolically using a recursive procedure derived from the formula in [9], or by 
other methods. Second, the separation procedure may be implemented au- 
tomatically to take any set of functions Fi (3.9), and invert them. Finally, 
throughout all these computations it is vital, particularly for large N, to 
keep the expressions to a manageable size. This is done by reducing the 
terms to a minimal independent set, z.e., a basis. The last two tasks have 
been implemented as a program in the symbolic manipulation program 
SMP [13]. Interested readers should contact the first author for details. 

In this Appendix we present the last of these tasks; a basis for the Lie 
algebra of up to four quantities, some of which may be duplicated. A reduc- 
tion to a basis is possible because of the axioms of a Lie algebra (1.5-1.7). 
This builds on the work of Dragt and Forest [5], who presented a basis 
for an arbitrary number of distinct quantities, but the orientation here is 
algorithmic, i.e., the way a symbolic manipulation package would project 
a term onto the basis. 

To aid in this effort, we shall need some notation and terminology. The 
term atom will mean a single symbol that represents something in the Lie 
algebra. A bracket is a less fundamental quantity, being a bracket in the Lie 
algebra of either atoms or brackets. Everything in the Lie algebra is either 
an atom or a bracket, or both. Since we are dealing with formal symbol ma- 
nipulation, the distinction between atoms and brackets is arbitrary and has 
no mathematical meaning. In fact, it will prove convenient to temporarily 
manipulate some brackets as atoms. Since they are just  symbols, atoms 
will be thought of as having no other property than their lexical order with 
respect to other atoms. When a bracket is to be thought of as an atom, 
its lexical position will be given explicitly. The symbols 'a', 'b', 'c' and 'd' 
used in this Appendix are not the elements of the Lie algebra themselves, 
but stand for these elements considered as symbols, either atoms or brack- 
ets. For example, [a, b] may be lexically ordered or not depending on what 
symbols a and b stand for. 

A nest is a special kind of bracket that  contains an atom in the first posi- 
tion and a nest or an atom in the second. We shall denote a nest by leaving 
off all but the outer pair of brackets, e.g., [f,g, f ,g] means [f, [g, [f,g]]]. 
Second, we shall classify the repetition of atoms in a term by numerical 
counts of each different one. For example, [f, g, f ,  g] is in the class 2 x 2 and 
[f, g, f ,  h] is in the class 2 × 1 × 1. This terminology is not restricted to nests. 
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Let us see how to rewrite a te rm in the basis for n different atoms, or 
1 x 1 x - . .  x 1, as derived from Dragt and Forest [5]. Any member  of the 
Lie algebra of this type may be reduced to a nest with the lexically first (or 
any part icular)  a tom last, as may  be shown by induction. First,  suppose 
tha t  the number of atoms is two. Then the term is automatical ly  a nest. 
If the lexically first a tom is not last, we use an t i symmetry  to rewrite the 
te rm so tha t  it is last. 

Suppose we have a term of brackets tha t  is not a nest; [a],a2,... ,an], 
where any te rm except the last may be some bracket. Let us look at one 
specifically, and say tha t  a, = [c, d]. Then the te rm is [ a l , . . . ,  a i - t ,  [c, d], 
ai+t , . . . ,  an]. Using the Jacobi identity, we may rewrite this as 

[at,a2,...,a,~] - [a t , . . . ,a i_ l ,c ,d ,  a i+l , . . . ,a ,]  
- [a l , . . .  ,a,_t,d,c, ai+x,... ,an]. (A.1) 

Now each of c and d may themselves be brackets, but  they  will have fewer 
total  a toms than  [c, d], so if we apply this t ransformation repeatedly, we 
will eventually have only single atoms,  and therefore a nest. 

If the lexically first a tom is not last in this nest, we must rewrite the nest 
so tha t  it is. Let us suppose in [al,a2,.. .  ,an] tha t  each of the a~ s tands  for 
an a tom and tha t  ai is the lexically first atom. If i = n - 1, then we apply 

def 
an t i symmet ry  and we are done. If  i < n -  1, call b = [ai+2, ai+3,... ,an]. 
Consider now the te rm writ ten supposing tha.t b s tands for an a tom and 
with the last two brackets explicit; then apply the Jacobi identi ty and 
ant isymmetry:  

an] = [ a t , . . . ,  ai_ , a,, b] = Ca1, . . . ,  [a i+l ,  b]]] 
= ai_ , [b, a,]]] + [b, a,]]] 

= - - [ a l , . . . , a i - l , a i + l ,  b, ai] -4- [ a l , . . . , a i _ l , b ,  ai+l,ai].  
(A.2) 

Each of these terms has the ai in the final position. Of course they  may 
not be nests, because b can be a bracket, but  by reapplying the nesting 
algori thm (A.1), which does not alter the position of the last atom, we will 
have expressed the original te rm as the sum of nests tha t  have the lexically 
first a tom last. 

We now need to consider the case of duplicate atoms. Of  course, all the 
reductions made for the case of distinct a toms apply here, but  there will be 
further reductions tha t  can be made  if some of the quantities are the same. 
The general technique is to s tar t  with the Jacobi identi ty on the outer  
nest, then  successively apply an t i symmet ry  and the inner Jacobi identities 
to find identities. Unfortunately,  a general t rea tment  for arbi t rary numbers 
of atoms is more involved than  in the case of distinct atoms. Here, we 
will consider the particular terms tha t  arise in the calculation for N = 6. 
Different aspects of the general problem are addressed in more detail in [1]. 
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For the calculation through total order N = 6, no term of more than 
four atoms will occur. Therefore, let us consider the possibilities for three 
and four atoms. For three atoms, the only case is 2 x 1. There is clearly 
only one term: [f, g, f] if it is the lexically first term that  is duplicated, or 
[g , g, f] if not. 

For four atoms, there are three possible situations, 2 x 1 x 1, 3 x 1, and 
2 x 2.  There are respectively three, one, and one term in the bases for each. 
To analyze these three cases, one should start with the six terms arising 
when all atoms are different: 

[k,h,g,f], [k,g,h,f], [h,k,g,f], [h,g,k,f], [#,h,k,f], 

Now we may identify k with h to find three different terms: 

[h,h,g,f], [h,g,h,f], [g,h,h,f]. 

[g, k, h, f]. 
(A.3) 

(A.4) 

For duplication of the lexically first atom, one must make use of the Jacobi 
identity on the outer bracket, to reduce the number of terms from four to 
three: 

[k, f ,h , f] ,  [h, f ,k , f] ,  [ f ,k ,h, f] .  (A.5) 

We see easily that for 3 x 1 there is one term: [g, g, g, f] (or [f, f ,  g, f]).  
Now consider the 2 x 2 case. At first glance, it looks like there are two 

terms in the basis, [g, f ,  g, f] and [f, g, g, f] .  However, these can be shown 
to be equal by applying the Ja~obi identity on the outer brackets, and 
antisymmetry: 

[ f ,g ,g , f ]+[g , [g , f ] , f ]+  [[g,f],f,g] = 0 
[ f , g , g , f ] -  [g,f ,g,f] = O. (A.6) 

We have now shown that  any member of the Lie algebra of atoms can 
be reexpressed as the linear combination of nests of these atoms with the 
lexically first atom last. Accounting for duplicate atoms, this set can be 
made smaller to form a basis. This is not necessarily the representation in 
the fewest number of terms, nor is it the most natural way of expressing the 
equations for efficient numerical computation. For either of these alternate 
goals, it is not obvious which way to express the equations. In fact one 
must try many possiblities, guided by intuition, to improve the expression. 

4 .B  C o n c a t e n a t i o n  f o r m u l a e  for  N - 6 

In this Appendix, the results for the computation described above for N = 6 
are presented for reference. 

First, we consider the problem of concatenating just the first-order term. 
The tables 4.1-4.3 at the end of this Appendix give the solution for the terms 
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on the right side of (4.11). In these tables, the k are described in terms of 
j .  Since these j always have the same superscript as the k, it has been 
left off. Note in the tables the manifestation of the condition determining 
the number of brackets required (3.10): for the k (3) expressions, there are 
at most 3 brackets in a term, for the k (4) calculations, at most 1, and for 
k (5) and k(6), no brackets. The expressions for k may be obtained from 
Appendix 4.C by keeping only these number of brackets and setting the 
appropriate j to zero. 

As mentioned in Section 4.4.2, it is possible to apply the concatenation 
rules for second- and higher-order to rewrite (4.11) in the standard factor- 
ization. In this case, 

e:fZ:e:f2:e:fZ:e:f4:e:fh:e:f6:e:gl: = e:hl:e:f2:e:h2:e:h3:e:h4:e:hh:e:h6: 
(B.1) 

where 

hl = f l  q- e:f2:(gl -t- k~ 3) q- k~ 4) -I- k~ 5) -}" k~ 6)) 
: z r/,.(3) /.(4) rt.(3) t.(3) h= k~ :~ + k~ 4~ + k~ °~ + k~ °~ + ~,.~ , .~  + k ~ l  + ~ ~ , .~ , k~4>l 

_ k ( 5 )  k ( 3 ) 1  h~ = g3) + g , )  + g~) + go) tk~") + ~ , ~. ,  
= ~rb(3) /,.(4) h, k, ~ + k~"~ + k,~'~ + k ~  + ~,.~ , ~  + ~?~] 

h~ : k~ ~ + ~ ' ~  + ~ + k~ °~ - ~[g3~, k¢~:3 , ¢'~:3 , 

h~ = k~ 6~. (n.2) 

The formula for concatenation of the higher order terms, as described in 
Section 4.4.4, is fortunately much simpler. We know first of all that second- 
order transformations are handled using the exchange rule. We may thus 
consider the problem to be 

e:fa:e:f4:e:fh:e :f6: e:g3:e:g4:e:gh:e :g6: : e:ha:e:h4:e:h~:e :h6:. (B.3) 

The solution is 

h3 = f 3 + g 3  

h~ = f~ + g~ + ½[f~, g~] 
__ 1 .  2 hs = Ys+g5 [g3,f4]-}:f3:2ga+~.g3: Y3 

1. 2 ' [f4, g4] -- ¼ [f4, f3, g31 h6 = f6 "4- g6 - [g3, fs] "4- ~ .g3: f4  q- 
z "f3"3 z -¼[g4 , f3 ,g~ ]  + ~ .  • g 3 -  ~:g3:3 f~ + ~[ f3 ,g3 , f~ ,g3] .  (B.4) 

Again, the reader is reminded that  this is not necessarily the most com- 
pact or computationally efficient form. For purposes of numerical coding, 
it is possible to rearrange the terms so that quantities already calculated 
can be reused to maximum benefit. In such a code, there are three basic 
routines, one that  moves the first-order transformation according to (B.2), 
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one that  does the linear transformations on the polynomials according to 
the exchange rule, and a third that  moves the higher-order terms according 
to (B.4). 

1 ° ° • k~ 3) 7" = 3 j~ + l [ j~ , j~]_  ~[Jl,j3,j~] + g[J2,Y2,)~] 
1 . . . .  -~[ .h ,~a ,  J~,.h] - ~ ~D~, ) I , ) a ,y~]  + ~b~,g2,Yu,J l ]  

k~ 3) 7 " - 3  J2+ ½[J3 , J~] -~[ j : , Ja , j l ]+  ~ " " "~[j3,y2,)~] 
- ~ [J~, J~, J~, J~] - ~ b~, ~1, ~ ,  ~] + ~ b~, ~, ~ ,  J~] 

k(33) r = 3  j 3 + ½ [ J 3 , j 2 ] - '  ' " " 1 • • • [ J 2 , 3 3 ,  3 2 ]  J v  ~ [ J 3 ,  3 3 ,  3 1 ]  "~- 1 [j2, j~, j3, j~] 
1 . . . .  - ~ [ ~ , ~ , ~ , ~ x ]  + ~ [ ~ , ~ , ~ , ~ , ]  + 5 b ~ , ~ , ~ , ~ x ]  

k (3) 7" -  5 ' 1 • • • 1 . . . .  1 . . . . .  -~[J3,33,32] + ~[j3,32,33,j2]- ~[J3,33,33,3~] 
k~ 3) r = 6  ' ~ [ j 3 , j a , j a , j 2 ]  

$.--g1:2 f3 

5~ 3) : - g l :  f3 

j(33) f3 

TABLE 4.1. The polynomials k (3). 

k~ 4) 
k~ 4) 

k(3 4) 

k( 4 ) 

k~ 4) 

r = 4  

v = 4  

7 = 4  

7 " = 4  

v = 6  

j l  + 1[j2, j l]  

J~ + ½D3, j l]  

j 3 +  71 [J3, j2] + 51 [j4, j l]  
1 " j4 -~- ~ [j4, j2] 

½ [j4, J3] 

j~4) 

j~4) 

5(34) 

5 (4) 

TABLE 4.2. The polynomials k (4). 

1 .  3 ~ . - g l :  f4 
1 2 i : - -gl :  f4 

:--gl: f4 

f4 

k?)=  5) 

k(35)= 5(35) 

k(:) = 5(:) 
k~5)= 5~ 5) 

1 .  4 ~ . - g l :  f5 

:-g1:3 A 
l:_g 1:2 A 

: - g l :  f5 

k~6)= j~6) 
6) 

k(36)= 5(36) 

= S :  
k~S) = 5~ 6) 
k~6)= 5~ 6) 

,~0 :-g1:5 f6 
l : - - g l : 4  f6 

:-g1:3 f6 

½ :-g1:2 f6 
: - g l :  f6 

TABLE 4.3. The polynomials k (5) and k (6). 
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In this Append ix  the solut ion to equat ion  (3.8) is presented for all j t e rms  
of total  rank  at least 3 th rough  a cutoff  N = 6. This  is sufficient to calculate 
all the results  of Append ix  4.B using the exchange-and-separa te  m e t h o d  
on the first-order t ransformat ions .  By condi t ion (3.10), we need at mos t  
3 Poisson brackets  in the BCH formula;  this is as given explicitly in (3.7). 
Therefore,  by combining the mul t ip le  exponents ,  we have 

j l  "-- k l  - ½ [ k 2 ,  k l ]  - 1-~ [k l ,  k3,  k l ]  "4- ~ [k2, k2,  k l ]  -~" ?~ [k l ,  k3,  k2,  k l ]  
j~ = k ~ -  }[k~,~a]- ~[k~,k~,k~]-I  

+~[~,  ~ , ~ ,  ~] + ~[~, ~1, ~, ~11- ~[~, ~, ~, ~] 
jz = kz - ½[k3, k~] - ½[k4, kl] - ~[k2,  k3, k~] - ~[k~, k4, k~] 

+~[~,  ~, ~] + }[~,, ~, ~1] + ~[~, ~, ~, ~,]-  ~[~, ~, ~, ~1] 
1 j4 = k 4 -  ½[k4, k ~ ] -  g[ks, k~]- ~[k~,k4, k2] + ~[k3 ,ka ,  k~] 

1 1 -~[~, ~,, ~] + ~[~,, ~, ~] + ~[~, ~, ~, ~] 
j~ = ~ _ 1[~,,~]_ ½[~,~]_ }[~,~,,~] + }[~,,~,~] 

j6 = k6 - ½[ks , ka ] -  l~[k3,k4, k3]. (C.1) 

When  inverted,  we have the results for k in te rms  of j ,  th rough total  rank 
s ix :  

1 • 1 [ i l ,  J3, Jl] + 1 [ j~ ,  J2, Jl] kl = Jl -t- ~ [ J 2 , J l ] -  g g 

-~[ j l , ja , j2 , j l ] -  ~[j2,jl , ja,jl] + ~[j2,j2,j2,jl] 
1 • l ~ / 1 , j 4 , j l ] -  ~[j2,j3,jl] + k2 = j2 + 7[Ja, j l]  - g l [ Ja , j2 , j l ]  

- ~ [J2, J3, J2, Jl] - ~ [J3, J~, J3, J~] + ~ [Ja,  J2, J2, J~] 
~ .  1 • 1 [J4, j l ]  --  "i[32' j3, j2] --  1 " k3 j3 + 7[Ja,j2] + g 1 • g[Y2,j4,jl] 

+ ~ [ j 3 , j a , j l ]  + ~[ ja , j2 , j l ]  + ~[J2,j2,J3,j2] 
1 . . . .  1 . . . .  

-~[J2,Y3,aa,31] + ~[aa,Y2,23,31] + ~[j3,Ja,J2,Jl] 
k4 = j4 + 1 • 1 • 1 [ j3 , j4 , j l ]  [Y2, j4, j21 - ~ [j3, j3, j2] + ~[j~,j~] ~ [J4, j2] + 

~2[J4,ja,Jl] + ~[J3,j2,ja,j2] - ~[j3,j3,ja,jl] 
1 " 1 " 1 " k~ = j5 + ~[J~,J2] + i[J4,j3] - ~[y3, j4, j2] 

i~2 [J4, ja, j2] + ~ [j3, ja,  j3, j2] 
1 • 1 " 1:6 ---- j6 + ~[Js,j3] + i~[J3, j4,j3].  (C.2) 

The  results  in the tables of Append ix  4.B, as well as the examples  of Sec- 
t ions 4.4.2 and 4.4.4, may  be checked against  this by set t ing the appropr ia te  
j te rms to zero and discarding the Poisson brackets whose total  rank ex- 
ceeds six. 
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