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MANUAL FOR THE PROGRAM TEAPOT
NONINTERACTIVE FORTRAN VERSION

(THIN ELEMENT ACCELERATOR PROGRAM
FOR OPTICS AND TRACKING)

Lindsay Schachinger, Lawrence Berkeley Laboratory, Berkeley, CA, 94720
and Richard Talman, Laboratory of Nuclear Studies,
Cornell University, Ithaca, NY 14853

The recommended procedure for acquiring the code is to communicate with
either of the above authors. The code and this manual can be obtained using
“anonymous ftp”, from hazel.tn.cornell.edu, 128.84.251.20. Assuming that the
ftpot release is to be untarred from a directory SHOME /tpot, proceed as follows:

% cd $HOME

% mkdir tpot

% cd tpot

% ftp hazel.tn.cornell.edu

Connected to hazel.

220 hazel FTP server (Sun0S 4.1) ready.

Name (hazel.tn.cornell.edu:talman): TYPE anonymous <cr>
331 Password required for anononymous.

Password: _TYPE e-mail address <CR>
230 Guest login ok, access restrictions apply.

ftp> TYPE cd pub <CR>

250 CWD command successful.
ftp> TYPE 1s <CR>

200 PORT command successful.
150 ASCII data connection for /bin/ls (128.84.251.20,1182) (0 bytes).

ftpot.tar.Z

226 ASCII Transfer complete.

13 bytes received in 0.65 seconds (0.02 Kbytes/s)
ftp> TYPE get ftpot.tar.Z <CR>

200 PORT command successful.
150 ASCII data connection for ftpot.tar.Z (128.84.251.20,1183) (3081895

bytes) .

226 ASCII Transfer complete.

local: ftpot.tar.Z remote: ftpot.tar.Z

3095826 bytes received in 20 seconds (1.5e+02 Kbytes/s)
ftp> TYPE quit <CR>

221 Goodbye.

% uncompress ftpot.tar.Z
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% tar xvf ftpot.tar

e This will have generated a directory SHOME /tpot/ftpot as well as self-
consistent contents and subdirectories. For more instructions refer to README
files in SHOME /tpot /ftpot and SHOME /tpot /ftpot /test. A postscript ver-
sion of this file, tpotfullFORTRAN.ps, can be also obtained from the same
directory using anonymous ftp. Otherwise, there is a TeX file tpotfullFOR-
TRAN.tex or a dvi file can be obtained, but the only way of getting a copy
of the manual that includes figures is to get tpotfullFORTRAN.ps and print
it on a postscript printer. This includes encapsulated postscript produced
using “TEXSIS” starting from tpotfulFORTRAN.tex. If a version of TeX
other than TEXSIS is used for converting file.tex to file.dvi it is necessary

to emulate this encapsulation some other way, or to remove the figures.
e Sample lattice description files are in subdirectory SHOME /tpot/ftpot/test.

e [t is recommended that a directory structure like SHOME /tpot/ftpot/test’s
be established. Instructions for doing this, command files for routing out-
put files into these directories are included, and instructions for using them
are contained in the README files mentioned above. A standard direc-
tory organization is useful for writing, then later reading, an intermedi-
ate, “flat”, machine description file (fort.7) that encapsulates preliminary
lattice tuning already performed and can be used for tracking or further

tuning.

e Since accelerators are “flaky”, and since TEAPO'T models accelerators
faithfully, it follows that TEAPOT may occasionally appear “flaky” also.
As with real accelerators, it is normal to have to iterate correction proce-
dures. Lattice manipulations, especially tune changes, sometimes cause the
lattice to go unstable. Usually, as with real storage rings, taking smaller
steps overcomes the problem. Most other difficulties have to do with mis-

interpretation of this (obscure) manual (outright errors in the manual have
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not been unknown). R. Talman will be pleased to attempt to repair any
such misinterpretations as well as any bugs that surface. Based on track-
ing down hundreds of problems on tens of accelerators, the thin element
approach is never the ultimate source of disagreement with either expecta-
tion or other codes. In rings with only a few dipoles they should be broken
up so that no deflection is greater than a few degrees, and “mini-beta”
quadrupoles should be broken up, but otherwise compulsive splitting up of

elements is rarely justified or necessary.

GENERAL DESCRIPTION AND SURVEY OF CAPABILITIES

TEAPOT is an accelerator modeling code that treats all elements (aside from
drifts) as thin elements. This gives it the feature, unique among numerical codes,
of being symplectic to all orders (not counting computer precision limitation.)
The command language for TEAPO'T is a dialect of that used by MAD. This
section gives a brief overview of many of the capabilities. Detailed syntax and
parameter definition is contained in later sections. All variables are measured in

ST units (except energies are measured in GeV.)

TEAPOT reads a lattice in Standard Input Format and converts all thick
elements to thin ones. The user can acheve arbitrarily close agreement with thick
element representations by breaking elements into shorter lengths. Because this
process is most important for quadrupoles there is special provision for breaking
them up—if a quadrupole is of type IR or IRn (where n = 2, 4, 8 or 16), it is
split into four or 4n thin quadrupoles. This breaking up is handled internally in
a way that is transparent to the user, including the assignment of errors. The
sublengths chosen are not quite uniform—rather they follow an algorithm for
enhanced tracking accuracy. It is legitimate, and even sensible if computing time
is not an issue and comparison with other lattice codes is, to make all quadrupoles
have type IR or IRn. A Twiss analysis can be performed and the tunes can be

adjusted using a thin lens matrix representation of the machine. Magnetic errors

and misalignments, either systematic or random, can be added to elements, after
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which the closed orbit can be found and particles can be tracked exactly through
the resulting lattice. By means of this tracking numerous accelerator operations

can be modeled.

A preliminary Twiss analysis is available which assumes an ideal, uncoupled,
lattice and works with 2 x 2 matrices. This is useful for comparison with other two
dimensional codes. However most other operations of TEAPOT use a general 4 x
4 formalism which explicitly evaluates eigenmotions in the presence of arbitrary
errors. These analyses use tracked particle trajectories to compute the first and
second order transfer matrices for the entire machine or through arbitrary sectors
of the lattice delimited by concatenation flags. Subsequent tracking is performed
exactly or using these maps depending on the flag settings. A ‘BEAMTRAK
beam’ of up to 1024 particles can be randomly generated and the particles tracked
individually with the beam centroid coordinates being recorded at beam position
monitor locations. The machine can be decoupled using skew quadrupoles, the
tunes can be adjusted, and the chromaticity can be fit in the presence of errors.
Nonlinear fitting of the values of user-declared parameters can be performed to
cause the large amplitude lattice transfer map agree as nearly as possible with

the small amplitude transfer map.

Longitudinal path length and velocity deviations needed for synchrotron os-
cillations are calculated. RF cavities are supported. It is assumed that output of
longitudinal displacements during tracking is desired if and only if there is an RF
cavity in the lattice. Since the nominal revolution period is calculated internal
to the program, the RF frequency is input as the harmonic number (an integer)

multiple of the revolution frequency.

The two main purposes of TEAPOT are the analysis of the expected per-
formance of already designed lattices and the simulation of lattice tuning and
correction operations. TEAPOT’s design capability is restricted to making the
best use of the elements present and hence distinguishing among different pos-

sible designs. It is not intended to be used for basic linear lattice design and
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matching operations such as are performed by MAD or SYNCH.

TEAPOT is intended as the central computational part of an interactive
operations simulation using a unix workstation but this manual is restricted to
the setting up and noninteractive use of the program. Graphics and interactive
descriptions are contained elsewhere. Most capabilities described here have been
ported to the VAX and have been or can easily be ported to the CRAY or pre-
sumably to any other mainframe computer. Also the code has compiled and run

on most unix workstations; including SUN, HP, DEC, IBM and Silicon Graphics.

The first portion of this document is a description of the elements, commands
and options recognized by TEAPOT. Appendices A through E describe the for-
mat of output or input files. Appendix F defines the various special type codes
recognized by TEAPOT and explains how they can be used to control calcula-
tions. The material to this point is intended to give succinct instructions on how
to set up an input file. The remaining two appendices give an extremely verbose
description of many of the formulas used in the program. They are intended

to augment the original publication in Particle Accelerators, 1987, which is also

SSC-52.

There are versions of the code in two computer languages, Fortran and C.
Initially the code had been written in Fortran; the conversion to C was per-
formed in 1988 by Vern Paxson. Subsequent coding was sometimes in C, sub-
sequently ported to Fortran, and sometimes vice versa. The two versions are
almost completely interchangeable, both in input and output. At least they were
until roughly summer of 1990. Since then numerous changes, having to do with
beam steering, tracking of longitudinal displacements, allowance for RF cavities,
support for dynamic modeling such as resonant extraction, and ability to model
aperture limits and maximum element strengths have been coded in the Fortran
version, and not yet ported to the C version. This version of the manual reflects
those changes, as well as some features supported by both versions, but not yet

described in the official manual, which is supposed to be valid for both languages.
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There is a small difference between the “thin element circumference” and the
“thick element circumference”; it is due to the use of straight line segments. It
is explicitly indicated in the output printout, and can either be ignored, reduced

by breaking elements into shorter lengths, or otherwise allowed for.

Effective October 1993, appreciable (but backward compatible) extensions
will have been incorporated going beyond the “standard lattice description lan-
guage” of Snowmass 1984 which, justified or not, we also call MAD 4.0. (Mis-
cellaneous minor extensions had crept in previously.) New features include aper-
ture limitations at (almost) all elements, and maximum bend strengths for most
active elements. These changes are compatible with, and encouraged by, the si-
multaneous inclusion of support for “sds”, self-describing data files. While this
disciplined data format has not yet achieved sufficient acceptance to be adopted
as “standard”, its use would relax the constraints that presently tend to freeze file
formats and impede the introduction of new features. The following two tables
list the elements recognized by TEAPOT: the first lists “standard” parameters,
the second lists extensions. Though TEAPOT does not support bend elements
other than sector bends (SBEND’s), it is straightforward to model rectangular
bends (RBEND’s) and bend elements with other pole angles. An “awk” script
“mad2tpot”, that performs this operation mechanically is available. It can also
be tailored to perform other minor variations. There is also a “wrapper” script
called “teacozy” that permits going beyond the standard to use element names

longer than eight characters or containing special characters.
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ELEMENTS THAT ARE RECOGNIZED BY TEAPOT
(WITH “STANDARD” ALLOWED PARAMETERS)

DRIFT L drift space
SBEND L ANGLE K1 K2

sector bending magnet
(RBEND) L ANGLE K1 K2

rectangular bending magnet
TILT quadrupole
TILT sextupole
TILT octupole

QUADRUPOLE L K1
SEXTUPOLE L K2
OCTUPOLE L K3

MULTIPOLE KnL Tn (n=1,9) general thin multipole
SOLENOID L KS solenoid

HKICK L KICK horizontal closed orbit corrector
VKICK L KICK vertical closed orbit corrector
HMON L horizontal monitor

VMON L vertical monitor

MON L monitor in both planes
MARKER marker

RFCAVITY L accelerating cavity
ECOLLIMA X(Y)SIZE elliptic aperture

RCOLLIMA L X(Y)SIZE rectangular aperture
XSEPTUM horizontal septum

All elements also accept special TYPE declarations. See Appendix F. Since
ECOLLIMA and RCOLLIMA elements are replaced internally by a thin mask at
each end, they should probably not be given a TYPE declaration. For example

making a collimator TYPE=X2 will give repeated output to fort.28.
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Effective January, 1994, RBEND elements are allowed, primarily to support the
modeling of wigglers. They are risky in the sense that the code using them has

been less exercised and debugged than that supporting SBEND’s.
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ELEMENTS THAT ARE RECOGNIZED BY TEAPOT
(WITH “EXTENDED” ALLOWED PARAMETERS)
DRIFT
SBEND ANGLEMAX TYPEAPER X(Y)APSIZE X(Y)OFFSET
WIGGLER KZ KX AX BO
TYPEAPER X(Y)APSIZE X(Y)OFFSET
QUADRUPOLE KIMAX TYPEAPER X(Y)APSIZE X(Y)OFFSET
SEXTUPOLE  K2MAX TYPEAPER X(Y)APSIZE X(Y)OFFSET
OCTUPOLE K3MAX TYPEAPER X(Y)APSIZE X(Y)OFFSET
MULTIPOLE
SOLENOID KSMAX
HKICK KICKMAX TYPEAPER X(Y)APSIZE X(Y)OFFSET
VKICK KICKMAX TYPEAPER X(Y)APSIZE X(Y)OFFSET
HMON TYPEAPER X(Y)APSIZE X(Y)OFFSET
VMON TYPEAPER X(Y)APSIZE X(Y)OFFSET
MON TYPEAPER X(Y)APSIZE X(Y)OFFSET
MARKER
RFCAVITY VOLT VOLTMAX LAG FREQ(=harm.
RAMPFREQ RELMORAT ENRGFRAC  ENRGLOSS
ECOLLIMA
RCOLLIMA
XSEPTUM XIN(=) XTHCKNSS(+) KICK KICKMAX
SUP(+) SDWN(>SUP) LAMBRTSN
TYPEAPER X(Y)APSIZE X(Y)OFFSET
QUADEND INPLOUTM X(Y)POLANG INVFOCLN QUADLENG
BEAMBEAM BMBMCHRG X(Y,Z)BMOFSET X(Y,Z)BMRMS

num.)

DMPDEC(X,Y,CT)
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Elements ending with “MAX” are all called “MXSTRENG” internally.
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SPECIAL TEAPOT ELEMENTS

Except TEAPOT specials, elements and parameters are described in detail

in the MAD manual (version 4).

Stochastic emittance alteration can be modeled with the STOCHAST com-
mand. This command was designed primarily with electrons in mind (but, with
reinterpretation, the input parameters can be altered to allow modeling stochastic
emittance growth in proton accelerators.) In electron accelerators, equilibrium
between stochastic growth (due to quantum fluctuations) and damping (due to
making up the lost energy in the rf cavities) is established within milliseconds.
The inputs SIGX, SIGY, and SIGCT are the desired equilibrium rms values
of bunch width, height, and length. The inputs DMPDECX, DMPDECY, and
DMPDECCT are the fractional reduction per turn in phase space radius (with
momentum axis normalized for circular phase space orbits). The actual stochastic
exitation applied each turn can be inferred from SUBROUTINE stochini, which
has detailed comments. Since noise and damping are applied only to the coordi-
nates x, y, and ct (and not to the momenta px, py, pz) the damping decrement and
noise strength are accordingly modified internally. The x damping is reckoned as
fraction DMPDECX of the deviation from the off-momentum horizontal closed
orbit appropriate to each particle. Vertical, y, damping has a similar reference

orbit subtraction, but there is no longitudinal, ct, reference orbit subtraction.

Since the equilibration time will be many thousands of turns there is a large
advantage in establishing starting distributions that are close to equilibrium. This

can be done using the GAUSSIAN beam feature of TRACK or TRACKCLO.

Hardware maxima of elements physical elements that have a single natural
strength parameter are assigned by ANGLEMAX, KIMAX, K2MAX, K3MAX,
KSMAX, VOLTMAX, or KICKMAX. MXSTRENG is synonomous with each of
these, depending on the context. By default all these hardware limits are taken
to be infinite. At this time the only TEAPO'T operations that respond usefully
to finite values for these limits are HSTEER and VSTEER, which will refuse to
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exceed the KICKMAX values of the HKICK or VKICK elements they use. (This
last sentence was added to this manual at an instant in time at which the code
to support bend maxima had been written and was “certain” to be installed “in

the next couple of days”. Unfortunately this has not yet happened.)

Most elements accept aperture definitions. During particle tracking particles
outside the aperture are lost. The aperture check is made at the end of every
drift, which is to say at the beginning of every active element. If an aperture
check is required in the interior, the element has to be split at that point. This
has the effect of inserting a (zero length) drift. Apertures can be elliptical, TY-
PEAPER=1, rectangular, TYPEAPER=2, or diamond, TYPEAPER=3. The
default when no aperture parameters are given is a circle of radius one meter. It
is not directly legitimate to use, say, TYPEAPER=ELLIPSE, but the same can
be accomplished by first defining ELLIPSE=1 in the lattice file.

Aperture shapes and dimensions are illustrated in the figure. XAPSIZE and
YAPSIZE are half-aperture dimensions. If only one is given the other one defaults
to the same value. Cartesian coordinates of the aperture center are given by

(XOFFSET,YOFFSET)—default is (0,0).

Aperture limits are not supported for some elements. For backward compati-
bility this includes collimator types ECOLLIMA and RCOLLIMA, which become
less flexible than ordinary elements for defining apertures as a consequence. Also
excluded are elements DRIFT, MARKER, and MULTIPOLE; also SOLENOID,
RFCAVITY and XSEPTUM. (Technical aside: the latter three are segregated
because they exercise “squatter’s rights” in high order multipole storage locations
of fort.7, the flat machine description file. This accomplishes nothing, but may
simplify slightly the task of supporting variable maximum multipole index some-
time in the future. The amount of extra storage space required to record aperture
parameters and magnet strenth limits for every element is far from trivial. It is
anticipated that some users will be forced to expand their computer memory al-

location on this account. In principle this extra memory could be captured from
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xapsize

<

xoffset yoffset
aptype =1 aptype = 2 aptype=3
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L ambertson

Figure 1: Aperture definition parameters.

the (rarely used) memory allotted to high order multipole coefficients.)

For modeling slow particle extraction the XSEPTUM element can be used.
Presence of any XSEPTUM element forces EXTRACT to be true. With EX-
TRACT true, a BEAMTRAK mode is enabled that allows tune adjustment ele-
ments (or any other elements) to be adjusted in increments, periodically during
particle tracking. Initially the TRACK command works as usual until every par-

ticles has been tracked for the requested number of turns. After that, and after



Page 14 June 12, 1996

an ERRORS (or MODIFY) command has entered the desired element changes, a
command CONTINUE, turns=<integer> causes tracking of the same set of par-
ticles to continue for the newly requested number of turns. This can be repeated
as often as desired. EXTRACT also has the effect of suppressing subtraction
of the closed orbit from coordinates printed out and also of suppressing certain
beam moment calculations and their printout. When finished tracking a set of
particles, if further operations are to be performed, it is first necessary to issue
a DUMPBEAM command. This BEAMTRAK condition only occurs (at time
of writing) because BEAMTRAK or GAUSSIAN tracking has been explicitly

requested, or because an XSEPTUM element is present anywhere in the lattice.

The XSEPTUM element: administers horizontal deflection KICK to any
particle outside its outer surface; has no effect on a particle inside its inner
surface; and completely absorbs any particle hitting the septum electrode. To
allow for septum thickness and particle slope the (necessarily positive) thickness
XTHCKNSS and the longitudinal coordinates of the septum ends relative to its
nominal position in the lattice, SUP and SDWN (>SUP), must be given. But
the XSEPTUM element is otherwise equivalent to a marker—it must not be al-
loted any arc length in the lattice, even if SUP and SDWN have non-zero values.
Effectively, this permits the element to intrude on its neighbors allotted space.
As a result, the only influence of the values of SUP and SDWN is in the deter-
mination of whether a particle passes inside, passes outside, or hits the septum.

Otherwise they have no effect.

Letting z,, be the x coordinate of the outer surface of the septum electrode,

its outer surface coordinate is

Tour = XIN(1 + XTHCKNSS/|XIN|).

When a particle passes the element the code determines which side of its trajec-
tory each of the four corners of the septum electrode inhabits and determines its

fate accordingly: if all four corners are outside the trajectory, the septum has
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no effect; if all are inside the particle is kicked; otherwise the particle is “ab-
sorbed”. If the XSEPTUM attribute list includes LAMBRTSN=1, the particle

is also absorbed in the case where it would otherwise be kicked.

Standard practice is to make the assignment, TYPE=X1, for the regular
septum. This causes printout (fort.18) of every particle on every turn at
the septum. Similarly, making the assignment, TYPE=X2, for the Lambert-
son causes turn-by-turn printout there (fort.28). Similary output at any two
other locations can be obtained by placing an element of TYPE=X3 (fort.38),
or TYPE=X4 (fort.48). TRACK, not TRACKCLO, is probably appropriate,
since the septum location is presumably fixed in absolute coordinates, while

TRACKCLO calculates displacements from the closed orbit.

For collimators, XSIZE and YSIZE denote the half-axes or half-widths. A
non-zero length collimator is split into two elements with a drift region between
them. In tracking the aperture is checked both at the beginning and end of
this region. A conical shaped collimator can be modeled by two zero length

collimators separated by a drift.

Treatment of solenoids is discussed in Appendix G. The solenoid strength
parameter has the MAD definition, KS = ¢By/(pc/e). The strength parameter
used in TRANSPORT and in Appendix G is K = ¢By/(2pc/e) = (KS)/2. The
bend angle of a particle with transverse momentum p,; in a solenoid of length L
is 260 = 2K L = (KS)L.

For RFCAVITY the entries used by TEAPOT differ from MAD. Treatment
of longitudinal quantities is described in the report teapot longit.ps. FREQ is
the harmonic number (which can also be thought of as the frequency in units
of the revolution frequency.) This permits TEAPOT to use its own calculated

value for the revolution frequency. For the normal choice of units, the units of

VOLT are GV, gigavolts.

For storage ring operation leave RELMORAT undefined or set it to 0.0, in
which case RAMPFREQ is ignored. ENRGLOSS is the energy loss per turn
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(presumeably from synchrotron radiation) to be made up by the cavity; normal
units are GeV. For more than one cavity the values of ENRGLOSS must sum
to the correct theoretical value. In tracking individual particles the energy loss
(equal to ENRGLOSS) is taken all at once at the cavity, not uniformly around
the ring. As a result the program cannot be used, without special coding, to
study spiralling in between cavities, or to obtain damping partition numbers.
(It would be inconsistent to do that in any case without introducing stochastic
anti-damping.) Adiabatic damping that accompanies energy ramping is correctly
described. With ENRGILOSS non-zero in a cavity, the RF phase of that cavity
is adjusted to make up that energy in that cavity. Hence effects of nonlinear rf
shape, such as particle loss if there is insufficient RF voltage, should be modeled
correctly. Each cavity phase can be shifted by LAG, but if the ENRGLOSS value
is non-zero it must be done with care as it is likely to upset the global energy

recovery; see below for more about LAG.

For simulation of acceleration, RAMPFREQ is the frequency in Hertz of the
accelerator magnetic field variation, assumed to be a biased sinuisoid, with the

starting momentum (times ¢) being p00c and the magnetic field varying as
RELMORAT = relative momentum ratio = [(B(max)-B(min))/B(min)].
pOc = p00c™(1.0 + 0.5*RELMORAT*(1 - cos(2*pi*telapsed* RAMPFREQ))).

The rf phase is calculated internally to correspond to the phase needed by the ref-
erence particle (the RF voltage VOLT being assumed to be constant) to match the
given reference-momentum dependence. The progam chooses the phase that will
cause stable oscillation. (This includes switching the phase on passage through
transition.) If there is more than one RF cavity they should be given different
names, so their parameters can be assigned independently. If ENRGFRAC is
defined (not 0.0) then the cavity phase is adjusted so the cavity makes up EN-
RGFRAC*(energy gain per turn). If ENRGFRAC is defined for one cavity it
should be defined for all, and the values must add to 1. If both energy loss and
energy ramping are in effect it is just asking for trouble to not make ENRGFRAC
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proportional to ENRGLOSS. If ENRGFRAC is not defined then the cavity makes
up energy proportional to the arc length since the most recent previous cavity.
For uniform azimuthal spacing that is what would normally be desired. This can
be altered using the variable LAG which shifts the RF phase of the individual
cavity, relative to what the program would set. This needs to be tailored to
the actual geometry. As an example, consider two cavities side-by-side, with no
other cavities in the machine. With LAG=0 for both cavities, and ENRGFRAC
not defined, the first cavity will automatically be phased to make up the entire
energy gain required for the ramp. Assuming one really wants equal energy gain

from the two cavities one could, in this case, set
LAG=F1/2arcsin AE/VOLT

where AFE is the energy gain per full turn. This is not really recommended as
it would not allow for variable energy gain per turn and frequency modulation.
For further tailoring of the RF, or for changing the energy ramp, it is neces-
sary to change the source code (within the do 190 loop of subroutine traconc)

appropriately, and to check by stepping through that section.

In order to be restorable in the writefile-readfile sequence, all RF parame-
ters are assigned names in the “flat” machine description arrays “atw(m, ielem)”
and “btw(m, ielem)”, which can be written to the “fort.7” external file. The
parameters fit in slots that contain multipole elements for magnetic elements.
(This special use of the structure renders it non-flat, but never mind.) If the
element number of the rf cavity is “i”, the slots used are btw(7,i)=relmorat,
atw(7,i)=rampfreq, btw(8,i)=vrf, atw(8,i)=phirf, btw(9,i)=freqhnum, atw(6,i)=enrgfrac,
atw(9,i)=enrgloss. Naturally the code must take care not to interpret these en-
tries as magnetic multipole elements. The parameters of XSEPTUM, QUADEND,
and BEAMBEAM elements are also “packed” into high atw() and btw() slots.

The rationale for “breaking” the flat structure is that only a few of these elements

are typically present.

No vertical bends are allowed for calculation of the Reference Orbit (the
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MAKETHIN command), however vertical bends may be introduced as errors,
misalignments, or in orbit correction—this is done with ERRORS or MODIFY.
(Note added 17 March 1992 : A version of the code called ftpotv supports vertical
bends. That code has had little testing and fails to support certain features
spelled out in this manual.) All elements are converted to single thin elements
except quadrupoles or dipoles of TYPE = ‘IR’,‘'IR2’,‘'IR4’,‘'IR8’, ‘IR16’, which are
split into four, eight, sixteen, thirty-two, sixty-four thin quadrupoles, respectively.
Disagreement with other modeling programs on the precise tune values, or on
whether a lattice is even stable, can often be rectified by splitting up some or
all quadrupoles or dipoles in this way. Splitting dipole elements is useful mainly
for combined function lattices or for small ring for which the dipoles provide
appreciable focusing. Quadrupoles in regions of rapid S-function variation (often
near low [ intersection regions, which is the source of the “ir” notation) often

require subdivision also.

The effects of nonzero entry angle into bend elements should be modeled
with multipole elements. This includes RBEND’s (i.e. rectangular bends) in
the standard input format. One exception to this is permitted for zero length
bends which are useful for comparison with simple analytic formulas. Rectangular
bends of zero length are modeled by SBEND elements of very short, but not zero,
length, of TYPE = ‘NOFO’. See Appendix F. An awk script mad2tpot.awk exists
that can be used to mechanically insert end effect multipoles into the input data

file, or which can be used as an example to perform to do it yourself “by hand”.

Effective January 1994, RBEND’s are allowed, especially for modeling wig-
glers. This incorporates the vertical focusing and absence of horizontal focusing
that accompany RBEND’s. Modeling of wigglers is discussed further in Appendix
I.

A QUADEND element placed at the end of a quadrupole will account for
the inevitable solenoidal field (causing a deflection of cubic order, like an oc-

tupole) as well as a sextupole, if the entrance or exit angle deviates from nor-
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mal. A QUADEND element must be introduced explicitly at each end, with
“INPLOUTM=+1" indicating entrance and “INPLOUTM=-1" indicating exit.
The horizontal pole-angle is entered as XPOLANG, with the sign depending on
whether it is entrance or exit. In both cases a positive sign indicates that a
particle with x > 0 “sees” a longer quadrupole because of the pole angle. Simi-
larly, the sign of the vertical pole angle YPOLANG is positive if a particle with
y > 0 “sees” a longer quad. The quad length is QUADLENG and its inverse
focal length is INVFOCLN, both in meters. (Actually, since only the ratio en-
ters, except for needing to be the same, the units do not matter. The focusing
strength per unit length KI=INVFOCLN/QUADLENG of the quadrupole, for
which this element forms the end, must be the same as for the QUADRUPOLE
itself.) If a non-zero value of QUADLENG is not given the program will issue an

error message.

Passage through an oncoming beam is represented by a BEAMBEAM ele-
ment. This is necessarily a “weak-strong” representation with the single particle
being tracked seeing the constant fields of the other beam like those of any other
fixed beam-line element. Since passage through the bunch is treated as occurring
impulsively at a single thin longitudinal element, it is only the longitudinally
integrated transverse kick that matters. Hence, though rms bunch length ZBM-
RMS is accepted for possible future use, it is not used at present. The transverse
profiles are entered by XBMRMS agqnd YBMRMS. It is the responsibility of
the user to calculate these for example by knowing the g-functions and the emit-
tances. All profiles are assumed to be Gaussian ellipsoidal. The total total bunch
charge is BMBMCHRG which is equal in magnitude to the number of particles
in the bunch. The sign of BMBMCHRG determines whether the linear beam-
beam effect is focusing or defocusing. To allow correctly for particle stiffness,
which is calculated internally, the momentum (or energy) must have been cor-
rectly entered by an ANALYSIS command. It is important to remember that
the units of energy are GeV (the only non-MKS unit in TEAPOT) and that

the particle type (electron or proton) must be correctly specified in all analysis
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and tracking commands. The reason this is emphasized here is that, unlike most
lattice elements for which the particle stiffness is “scaled out”, (for example a
quadrupole is characterized by its focal length), that is not true of BEAMBEAM.
Horizontal, vertical, and longitudinal offsets from the ideal orbit are entered by
X(Y,Z)BMOFSET. This can be used, for example, to represent parasitic beam-
beam crossings. Presence of a BEAMBEAM element will be reflected in small
amplitude tune shifts (of QAA and QDD) calculated by ANALYSIS but not (of
QX and QY) calculated by TWISS. If these agree in the absence of BEAMBEAM
element (as they should at least for ideal lattices) the difference can be used as
a check of code behavior. More recommended for the same purpose is to FFT
multiturn tracking data. The code currently assumes that both beams are highly
relativistic, but a comment in SUBROUTINE trkbmbm indicates how that can be

rectified if necessary.

There is a version of the code called TEASPOON which tracks particle spins.

It is due to Sateesh Mane and is available via anonymous ftp.

Effective 16 August, 1994, type WIGGLER is supported. See the report
teapot_wiggler.ps, written by Weiru Wang and R. Talman for details. One wig-
gler section consists of a half-pole, full-pole, half-pole sequence. In the code such a
section is modeled by a R-matrix and T-matrix only (making it non-symplectic.)
A full wiggler is made up of, say, 12 such sections. The inputs are: B0, the max-
imum magnetic field; K7, the longitudinal wave number with the z-dependence
taken as sinuisoidal; K X, the horizontal, possibly imaginary “wave number”; the
corresponding quantity K'Y is calculated internally using K72 = KX? + KY?;
AX is the maximum transverse orbit displacement of the actual orbit, measured
from a straight line coinciding with the orbit before the input and after the out-
put. It satisfies AX = 2% c* B0/(pc/e)/K Z? but it must be included as input;

p is obtained internally by inverting this equation.
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ANALYSIS

ANALYSIS, {ENERGY, PC} = <value>, [PARTICLE = {PROTON,
ELECTRON},] XTYP = <value>, PXTYP = <value>, YTYP
= <value>, PYTYP = <value>, DPTYP = <value>, DELTA =
<value>, [TAPE, [UNIT = <value>],], [PRINT]

The ANALYSIS command finds the closed orbit and performs a full Twiss
analysis of the machine by tracking particles with the given (“typical”) initial
amplitudes. ENERGY is given in GeV and DELTA allows an analysis to be
performed at any momentum offset DELTA. DPTYP is then the change in mo-
mentum used to calculate n and the chromaticity. PARTICLE is optional, the
default is PROTON. The UNIT number for the output file can be selected, and
several analyses can be run on a machine (for example, before and after fitting).
The default UNIT is 4 (see Appendix D). Note that if one wants to use tpot
plot package ( XPOT ) “TAPE” is essential in the ANALYSIS command. The
designation “TAPE”, handed down via the code MAD, is somewhat archaic and
misleading; as well as not in fact resulting in any magnetic tape being written,
it causes certain reference quantities to be updated. Though the usage is not yet
consistent, invoking TAPE sometimes has the effect of updating what constitutes
the “central” machine parameters. Tape output is obtained for every ANALY-
SIS command and the last one is retained. Inclusion of the PRINT directive
causes a table of Twiss parameters to be written to standard output along with

a reasonably abbreviated progress-describing commentary.

BPMERROR, KDERR is similar These are commands like the ERRORS
command but specialized to SSC requirements. They can be regarded as tem-

plates from which special error requirements can be patterned,

BPMERRORS, {<element1>, <element2>,..., <element16>} , SIGXWRTQ
= <value>, SIGYWRTQ = <value>, SIGXSOLO = <value>}, SIGYSOLO
= <value>, SIGXWRTS = <value>, SIGYWRTS = <value>, [CUT

= <value>, { SEED = <value>, SYSTEMATIC = <value> }]
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where SIGXSOLO and SIGYSOLO request displacement of the BPM with re-
spect to the reference orbit, SIGXWRTQ and SIGYWRTQ request displacement
of the BPM with respect to the closest quadrupole, SIGXWRTS and SIGYWRTS

request displacement of the BPM with respect to the closest sextupole.
CHFITOLD, see DECOUPLE
CHROMFIT, see DECOUPLE

CLOSEDORBIT
CLOSEDORBIT, X = <value>, PX = <value>, Y = <value>, PY

= <value>

This command sets the closed orbit to the given values. This is useful if
the machine has strong non-linearities and the program has difficulty finding the
closed orbit. In that case, this command would be followed by an ANALYSIS
command, and the values input would serve as a starting point for the closed

orbit search.

CPLTRK
CPLTRK, KICKX = <value>, KICKY = <value>, THRESHOLD

= <value>

This command computes interpolated coordinates at BPM’s which measure
beam position in only one plane for use in decoupling. To accomplish this two
particles are tracked, one with initial kick px=kickx and one with py=kicky (in
mrad) at the origin. At each detector of type chcd or cved, the coordinates of the
tracked particles and the ideal twiss parameters are recorded. At each detector,
the missing coordinate (in the plane of the tracked particle for greatest accuracy)
is obtained by interpolation, using the ideal twiss parameters and the coordinates
of the tracked particle at the adjacent detectors on either side. Output files
of the ideal-interpolated and error-present actual coordinates at each chcd and
cved are written (see the description of the fort.50, fort.51, fort.60 and fort.61 in
the Appendix). These can be used to study the accuracy of the interpolation in

detail. The rms of the difference between the interpolated and actual coordinates
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is computed as a figure-of-merit for the interpolation in each plane. A warning
message is printed whenever the fractional deviation of the interpolated from the

actual coordinate is greater than the user-specified threshold at a detector.

DECOUPLE (DECOUPLO is different), TUNETHIN, CHROMFIT,
CHFITOLD, TUNTHOLD

All these commands must be preceded by an ANALYSIS command. The
<parameter name>s cannot be global parameters, and must be specified by the
multipole coefficient, for example, gffb1] (NOT k1). The output results of the

fits are values for the multipole coefficients; they are related to the k,, used by

MAD by

by = knL/n!

where b, = bn(LBy/“Bp”). All elements of the “family” given in the command
are assumed to have the same value and are set to have the same value by the

fitting routines. For DECOUPLE there are three variants:

DECOUPLE, A1l = <parameter name>, A12 = <parameter name>,

A13 = <parameter name>, A1l4 = <parameter name>

DECOUPLE, A11 = <parameter name>, A12 = <parameter name>,
A13 = <parameter name>, Al4 = <parameter name> , A11M =
<parameter name>, A12M = <parameter name>, A13M = <pa-

rameter name>, A14M = <parameter name>

DECOUPLE, A1l = <parameter name>, A12 = <parameter name>>,
B1F = «<parameter name>, B2F = <parameter name> , TUNEX =
<value>, TUNEY = <value>

The first variant zeroes the four matrix elements Ryx, Ryx’, Ry’x, and Ry’x’
using the specified skew quadrupoles. The second variant sets antisymmetric
skew quad pairs ( in lattices having mirror symmetry.) For this it is necesary
to include the parameters A11M, A12M, A13M and A14M. The element con-

taining A11M must be mirror symmetric with the element containing A11 and
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the fit will insure A11M = -A11 and so on. The third variant (courtesy of Dan
Trbojevic and Steve Tepikian) zeros two elements, E12 and E22, of the matrix
E = B+ O, (see Appendix G), as well as adjusting the tunes to the values
requested for TUNEX and TUNEY. This adjustment sets determinant |E| to
zero, which is a necessary condition for making the tunes coincide. An exam-
ple skew quadrupole declaration is “all=sk2[al]”. An example erect quadrupole

declaration is “blf=quadhf[bl]”.

TUNETHIN, MUX = <value>, MUY = <value>, B1F = <param-
eter name>, B1D = <parameter name>, [NUMTRIES = <value>,
TOLERANCE = <value>, STEPSIZE = <value>]

The TUNETHIN command fits the tunes of the thin lens machine using the
specified quadrupoles. NUMTRIES is the maximum number of iterations for the
fitting, TOLERANCE is the maximum absolute value of the difference between
the requested values and the fitted values at convergence, and STEPSIZE is the
size of the first step in the fit. The defaults are 100 for NUMTRIES and 109
for TOLERANCE.

Effective 2 March 1994, both TUNETHIN and CHROMFIT were changed in
ways that were almost, but not exactly, backward compatible. To obtain precise
backward compatibility one must use TUNTHOLD or CHFITOLD, with exactly
the syntax just described. One can also use the new versions of TUNETHIN
or CHROMFIT with the same syntax and obtain essentially identical results.
The only reason for difference is that the algorithm alters correction elements
multiplicatively (old — new=old*(1+A)) rather than additively (old — new
= old+A’). In cases where “old” was zero this will not work and it will be
necessary either to use TUNTHOLD or CHFITOLD or to assign non-zero (but
otherwise non-critical) starting values. The reason for this change was to support
the ganging of non-identical elements into a family sharing the same power bus.
In that case the thin lens length-strength products will be proportional to the

element length for each element. The reason this is almost backward compatible
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is that previously it was assumed that all members of each family were identical,

and hence had identical strengths.

To make this feature more easily applicable, a new syntax for TUNETHIN is
allowed. Each element of the family (i.e. on the same bus) is declared to be “type
= xtun” or “type = ytun” as appropriate. (It is assumed there are precisely two
families.) Then in the TUNETHIN line one includes the entries “famf = xtun[b1]”
, “famd = ytun[bl],” (note that there are no variables here, it must be exactly
as shown) rather than giving element names to specify the elements to be tuned.
(If you think this syntax is obscure you should look at the code supporting it.)
Example input file lines fom the file “SHOME/tpot/ftpot/test/dat/fam_tune”

follow:

quadhf : quadrupo, 1 1g , k1
quadvf : quadrupo, 1 1qg , k1 = kq2, type = ytun

sextl : sext, 1 = 1s, k2 = ksl, type = xchr

sext2 : sext, 1 = 1s, k2 = ks2, type = ychr

tunethin, mux = 2.38, muy = 2.42, famf=xtun[bl] , famd=ytun[bl]
chromfit, famf=xchr[b2], famd=ychr[b2], chromx = 0.0, chromy = 0.0

kql, type = xtun

Note from this example that CHROMFIT supports the corresponding syntax,
but with “xchr” and “ychr”. The keywords “famf” and “famd” are mnemonic for
“horizontal family” and “vertical family”. The keywords “xtun”, “ytun”, “xchr”,

and “ychr”, cannot be altered (except by simple hacking of the code.)

CHROMFIT, CHROMX = <value>, CHROMY = <value>, B2F=
<parameter name>, B2D = <parameter name>, [NUMTRIES =
<value>, TOLERANCE = <value>, STEPSIZE = <value>]

CHROMFIT fits the chromaticity of the thin lens machine with the specified
sextupoles. NUMTRIES is the maximum number of iterations for the fitting,
TOLERANCE is the maximum absolute value of the difference between the re-
quested values and the fitted values at convergence, and STEPSIZE is the size
of the first step in the fit. The defaults are 10 for NUMTRIES and 10+* for
TOLERANCE.
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DECOUPLO

DECOUPLO, [NUMTRIES = <value>, BADNESS = <value>]

DECOUPLO is similar to HSTEER and VSTEER—read the HSTEER en-
try for a more complete description. The prescription used by DECOUPLO to
decouple the lattice (i.e. make the approximately-horizontal eigenplane be as
nearly horizontal as possible in a least-squares sense) is described in Section 7
of Appendix G. At least one skew adjusting element (i.e. a multipole with a t1
entry and with k1l set to a definite value, normally zero) with TYPE=‘cpla’ and
at least as many TYPE=‘cpld’ detector elements must be present. DECOUPLO
includes the capability of iterating until a goal badness (BADNESS) is reached,
or of iterating a specified number of times (NUMTRIES). If NUMTRIES and
BADNESS are not explicity set, NUMTRIES is set to 1, whereas if BADNESS
is specified but NUMTRIES is not, NUMTRIES defaults to 10.

DUMPBEAM, see also TRACK

By default (effective 10 July 1993) particles that have been tracked by TRACK(CLO)
are retained for possible subsequent tracking. This makes it possible to adjust lat-
tice parameters and continue tracking the same particles, for example to simulate
resonant extraction. In the event that any other instruction is to be processed
after the RUN instruction has completed, it is necessary to follow the RUN line
with a line containing only DUMPBEAM if the BEAMTRAK flag has been set
(either by the presence of an XSEPTUM element or by GAUSSIAN tracking.)
This retains the code’s backward compatiblity, for lattices without septum, in
that control continues to be returned automatically to subroutine cnirol when
the requested number of particles and turns has been completed. Subroutine
cntrol) fields all subsequent teapot instructions (such as STOP, TRACK, ER-
RORS, etc.) (A DUMPBEAM line present when it is not necessary will cause

Ckokok Kkk o9

the command parser to issue an unexplained warning message error ,
expected, enter scanning mode’ but will not otherwise cause malfunction.) (i.e.

make the approximately-horizontal eigenplane be as nearly horizontal as possible
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in a least-squares sense. ERRORS, see also MODIFY and PARMFIT
ERRORS, {<elementl>, <element2>,..., <element16>} , {SIG{A,
B}{0-9} = <value>, SIGX = <value>, SIGY = <value>, SIGTH-
ETA = <value>}, [BZEROL = <value>, CUT = <value>, FILE
= <value>, { SEED = <value>, SYSTEMATIC = <value>}, OR-
BCHEAT = 0,1]

This command sets multipole and position errors for all named elements. The
SIGB1, SIGA1, etc., are the sigmas for the errors of the multipole components
b., an specified by

Nmax

B, +iB, = By Z (by, +iap)[(z — Azx) +i(y — Ay)]".
n=0

For error-free dipoles by = 1, ap = 0. As an example, suppose the (fully rela-
tivistic) nominal accelerator energy is pc/e = E(TeV) = 20 . Conventionally a

quantity “Bp” is defined by

pcfe 2% 1013 Volts
c ~ 3x108m/sec

“Bp” = = 0.667 x 10° Tesla-m,

When the ERRORS command is applied to a dipole element of length L, a factor
BZEROL(dipole)= ByL/“Bp”, which is the bend angle in radians in the small
angle limit, is calculated internally—it should not be specified in the ERRORS

command. The magnetic field then is used internally in the form

LB, +iLB, = , ,
% — BZEROL[1 + 3 (bn + i @) ((z — Az) +i(y — Ay))"]
n=1

From this form it can be seen that the b, and a, are field errors expressed as

fractions of the nominal dipole field. The actual numerical values stored internal
to TEAPOT are

by = BZEROL, a, = BZEROL - a,, b, = BZEROL - b,.

These quantities can be output in ascii form to file “fort.77” by issuing a “write-

file, slow” command. They can be read back (modified if desired) from the same
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file, renamed “fort.7” by issuing a “readfile, slow” command. (If editing access
to these quantities is not required, the “fast” option is faster and more accurate.)
Provisions that allow the code to determine values for the a, and b, internally

either as systematic or as random variables are explained below.

For elements other than dipoles the field is expressed as a similar series,
but the by element vanishes and a different scale factor needs to be supplied,
either internally or externally. For historical, and not easily defensible reasons,
this is done by changing the meaning of the dimensionless parameter BZEROL,
depending on the element type. Because of the variety of conventional units and
definitions, and the variety of element types, it is difficult to spell out in clear
and simple terms how this common factor is to be interpreted, calculated, and
supplied in all cases. There is a script described below that can help to assure
that correct values are being used. Here we provide an illustrative calculation for

the next most important case after dipoles, namely quadrupoles.

Suppose the following: the nominal, maximum accelerator energy is py,c/e =
E,,(TeV) = 20; (being in the fully relativistic limit) all magnetic fields are pro-
portional to F; and the maximum nominal quadrupole gradient of the main
quadrupoles is g,,(Tesla/m) = 215. In one conventional description, the mag-
netic field variation in the horizontal plane (y = 0), of an imperfect quadrupole,

is written

Tln]“mx .
L C oy (@ +02)"
By(ES@—_g[ﬁ—FlO 42 bg-l-la‘2 w]
T

where R, is a reference radius, say 1cm. The value of R, and the factor 10+*

are normally chosen such that the numerical values of ag and bg are of order 1
for “bad”, low order, multipoles and much less than 1 for high order multipoles.
The strength coefficient of the quadrupole (defined the same way in MAD and
TEAPOT) is

dB,,/dx  dB/dx g 215 19
= = = = m s
cchn " qu” (:Bpaa 0.667 x 10°

k=
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independent of beam energy. Dividing the multipole series by “Bp” (in order
to cancel dependence on E), multiplying by quadrupole length L, and separating

into an ideal term and an error term yields

Bl/(E .T)L gL gL 14 Tmax o I’IL
' « - ’ =% Y + « 99 10 bQ + ZCLQ .
Bp” gy “Bp Bp 7,2_:2( " ) R

T

=BZEROL -z + BZEROL - Y (b¥ + ia%)a"

n=2

The factors k£ and L, required to calculate the ideal term, are supplied with the
QUADRUPOLE declaration statement, and using these,

gL

BZEROL(quadrupole) = By
P

is calculated internally. This same value is used as the common factor for the

error series. Matching coefficients we have

104 i b, = 1014 bi
Ap = s ) — .
n R?Ll n R?,Ll

Coefficients of different orders have different dimensionality. Without exception,
TEAPOT always uses meters as the length dimension. Since 1cm is a typical
value of R,, the a, and b, tend to increase by a factor of order 100 when the
order is increased by one. As explained above for dipoles, these quantities are

multiplied by BZEROL and stored as a, and by

For elements of type MULTIPOLE, the same error series is used, but the
“ideal” part of the multipole series vanishes and the value of BZEROL has to be
supplied in the form BZEROL=value in the ERRORS command.

SIGX and SIGY are the sigmas for x and y displacements, and SIGTHETA is
the sigma for an angular rotation about the s axis. CUT is the cutoff in sigma for

the generation of random errors. The default CUT is 3 sigma. SEED is the seed
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for the random number generator, one per run. If no seed is specified, the program
supplies one. TEAPOT accepts only the first seed input; subsequent seed entries
in the same run are ignored. SYSTEMATIC is a request for systematic errors,
and the value is the factor the sigmas are multiplied by to get the systematic
errors. When used in this way, inputs beginning with SIG, such as {SIG{A,
B}{0-9}, stand for systematic error values, not sigmas. Refer to the actual code

of subroutine “errors” for more information.

The ERRORS command must be preceded by a MAKETHIN command. It
has been found preferable to place ERRORS commands for quadrupoles con-
taining SIGTHETA as late as possible because the presence of coupling seriously

degrades the performance of the closed orbit finding algorithm.

The error distribution can be read from a file, using FILE=value, where
value is the unit number read. In this file the first two lines are primarily for the
user’s convenience; TEAPOT keeps track of them but they do not influence the
run. The first is a user-provided seed, presumably keyed to the subsequent en-
tries if they were Monte Carlo produced. The second is an eight character string
saved as a label. Subsequent lines are matched sequentially with occurrences of
the named element in the lattice and the entries (one per line) after multipli-
cation by a systematic factor, are applied to the corresponding element. The
multipole element affected and a common multiplicative factor are indicated by
the particular choices in {{SIG{A, B}{0-9}, SIGX, SIGY, SIGTHETA }=value.
This value multiplies the quantities read from the file and, by the BZEROL
value (supplied either internally or externally) and the results are applied se-
quentially to the named elements. The number of entries in the file must match
the number of occurrences of the named element. Other error distributions in the
same format can be concatenated to the same file and read by subsequent error
commands. The SYSTEMATIC directive should not be used in conjunction with
FILE.

An ERRORS command can include “ORBCHEAT=1" or “ORBCHEAT=("
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where “0/1” stand for “false/true” and no other values are allowed. The ER-
RORS command must be preceeded by an ANALYSIS with TAPE turned on.
The ORBCHEAT directive only makes sense if there are reasonable complements
of horizontal (type=KHKA) and vertical (type=KVKA) elements. When OR-
BCHEAT is true, the closest preceding and closest following steering elements
are automatically adjusted to compensate for any steering that occurs when er-
rors are added to elements being modified by the particular ERRORS command.
The compensation is such that the previous corrector, present element, and fol-
lowing corrector form a closed three-bump. Compared to most other features
in TEAPOT this is “cheating” because it uses information that the computer
“knows” but which would not not be known operationally. As well as checking
self-consistency, there are two intended uses for ORBCHEAT. One is to check
that the particular distribution of steering elements is capable, given perfect in-
formation, of achieving a satisfactory closed orbit in the presence of the particular
errors being added. The other is to expedite investigations of other multipole ef-
fects when one does not wish to take time to fix the orbit operationally. The state
of ORBCHEAT in one ERRORS command has no effect on any other ERRORS
command. ORBCHEAT cannot be used with KDERRS or any of the sector
steering algorithms HSTEER1, HSTEER2, etc. Switching to “ORBCHEAT=0"
is equivalent to removing ORBCHEAT altogether.

There is a (perl) script available, called “Fort7Moments.pl” which extracts
the actual errors that have been entered, from the “fort.7” file generated by
“writefile, slow”, and then works out their means and sigmas. Since there are
various conventions and ambiguities in multipole definitions, it is good practice

to confirm what errors are actually being assigned.

The ERRORS command can also be used ahead of a PARMFIT instruction
in order to flag elements whose strengths will be used as the parameters to be
adjusted by PARMFIT to improve the large amplitude lattice behavior in the
presence of nonlinearity. Any of the magnet element names, {SIG{A, B}{0-9}
can be prepended by the letter F, to yield {FSIG{A, B}{0-9} to flag that element
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for fitting. Effectively this establishes a “family” of correctors of that particular
multipolarity, superimposed on all elements at all locations in the lattice with

the element name contained in that ERRORS command.
The instruction MODIFY is entirely equivalent to ERRORS.
HSTEER, VSTEER, HSTEER[1-6], VSTEER[1-6]

Any one of these three commands must be preceded by an ANALYSIS com-
mand. HSTEER and VSTEER are normally used together, and iteratively. For
example: ANALYSIS, HSTEER, ANALYSIS, VSTEER, ANALYSIS, HSTEER,
ANALYSIS, VSTEER.

HSTEER utilizes the calculations performed in the previous ANALYSIS as-
suming that there is at least one TYPE=‘khka’ steering adjustor element (i.e. a
hkick type element with kick set to a definite value, normally zero) and at least as
many TYPE=‘khkd’ detector elements in the input lattice description, to flatten
the orbit (i.e. improve the central orbit steering) horizontally. Elements can be
placed arbitrarily, except that placing two adjustors with no separation makes
the solution indeterminate. Also the possibility of two adjustors “fighting each
other” needs to be kept in mind and made a part of whatever studies the code is
being used for. It is all right for detectors to be arbitrarily close to each other—in
fact, this is a legitimate way to assign increased weight to the beam detection
in regions of special importance such as intersection regions. The least-squares

procedure used is described in Section 6 of Appendix H.

VSTEER utilizes the calculations performed in the previous ANALYSIS as-
suming that there is at least one TYPE=‘kvka’ steering adjustor element (i.e. a
vkick type element with kick set to a definite value, normally zero) and at least as
many TYPE=‘kvkd’ detector elements in the input lattice description, to flatten
the orbit (i.e. improve the central orbit steering) vertically. Elements can be
placed arbitrarily. The least-squares procedure used is described in Section 6 of

Appendix H.
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HSTEER][1-6], VSTEER[1-6] perform steering that emphasizes the closed-
orbit quality in a particular sector, or at any set of locations defined to make
up a family. As many as 6 matched families of adjustors and detectors of both
horizontal and vertical detectors are allowed. As an example, HSTEER1 min-
imizes a sum of squares of closed-orbit deviations at all family 1 detectors as
well as at all detectors that are not members of any family; it uses only family
1 adjustors. (The inclusion of detectors not belonging to the family is to avoid
large excursions elsewhere in the lattice.) Family membership is specified by the
element name—the family number is a number from 1 to 6 which is the third

character of the element name. This naming distinction is ignored by HSTEER
and VSTEER.

KDERRS, see BPMERRORS

MAKETHIN

MAKETHIN, [PRINT = {BEAMLINE, ELEMENTS}|

The MAKETHIN command creates the data structures which represent the
thin lens machine in a form appropriate for tracking. The reference orbit is
found, and the thick element representation is converted to a thin element one.
This command should follow the TUNE and USE commands, and must precede
all the following commands. Inclusion of the PRINT directive causes geometric

information at each element to be written to standard output.
KDERRS, see BPMERRORS
MODIFY, synonym for ERRORS

The ERRORS command was initially intended only to introduce random or
systematic errors, but it has often been used to make intentional lattice modifi-
cations or compensations. Use of the synonym MODIFY should make the input

file more intuititive when the command is used to introduce intentional lattice

madifications. All attributes of ERRORS and MODIFY are identical.

PARMFIT, see also ERRORS
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PARMFIT, {ENERGY, PC} = <value>, XTYP = <value>, PX-
TYP = <value>, YTYP = <value>, PYTYP = <value>, DPTYP
= <value>, DELTA = <value>

The PARMFIT instruction invokes a nonlinear fitting routine that adjusts all
elements flagged in the ERRORS command (¢.v.) to optimize the large ampli-
tude behavior of the lattice. Here “optimize” means “make the large amplitude
interpolated transfer map be as closely equal to the small amplitude transfer
map as possible.” The “large” amplitudes at which the interpolated map is to be
evaluated are enterred in the same format as the TYP values in the ANALYSIS

command. This command is implemented only in the C version, ctpot.

READFILE

READFILE, { FAST, SLOW, COMPACT, SDSFILE }

READFILE reads the thin lens machine information from unit 7. Except for
a TITLE line, READFILE is normally the first line of the input lattice file unless
a special version is required. It should be followed immediately by an ANALYSIS
line, in order for teapot to regenerate various quantities that are not preserved in
the “fort.7” file. (Some quantities are recalculated only if the TAPE directive is
included.) These steps restore teapot to the same state it is in after processing an
input lattice in standard format and MAKETHIN. The purpose of this command
is to make it possible to input lattices tuned by TEAPOT or other programs, for
instance orbit correction programs. The option FAST (default), SLOW or COM-
PACT refers to reading unformatted (FAST), formatted (SLOW) or formatted
short (without the atw, btw etc ) files (COMPACT) respectively. As explained
under WRITEFILE, the SLOW or COMPACT option should be avoided if pos-
sible. Use of SDSFILE is described under WRITEFILE.

RUN, see TRACK and DUMPBEAM

Effective 10 July 1993, a RUN instruction with an XSEPTUM element present,
or one that uses GAUSSIAN or BEAMTRAK tracking, should be followed by
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a DUMPBEAM instructruction. This change was necessitated by a change in
default to keep particles, rather than dumping them, so that tracking the same
particles can continue lattice parameters have been changed. This is required for

modeling resonant extraction and other dynamic processes.

TRACK, TRACKCLO
TRACK|[CLO],[{SINGLE,GAUSSIAN,BEAMTRAK}], {ENERGY, PC}=<value>,
[PARTICLE = {PROTON,ELECTRON}, NUMPART = <value>,
SEED = <value>, SIGMACUT = <value>, APERTURE = <value>,
EIGENAMP, PRINT1ST, USER1 = <value>, USER2 = <value>,
USER3 = <value>, NSPRSSMX = <value>, ]

START,[X = <value>, PX = <value>, Y = <value>, PY = <value>,
DP = <value> | , [EPSX = <value>, EPSY = <value>, SIGDELTA
= <value>, PH = <value>], DL = <value>

RUN, TURNS = <value>

The track command tracks up to 1024 particles. The default particle type
is proton, and the energy is given in GeV. START starts a particle with the
given initial conditions. TRACK interprets START command variables as being
“absolute” displacements from the ideal orbit, and it prints out corresponding
absolute values. TRACKCLO interprets START command variables as being
“relative” displacements from the actual closed orbit (which was calculated by
the most recent ANALYSIS call, or input with the CLOSEDORBIT command),

and it prints out corresponding relative values.

The default TYPE of tracking is for SINGLE particles. In the case of GAUS-
STAN tracking, the number of particles NUMPART, random number generator
SEED and the cutoff (SIGMACUT) for the gaussian distribution should be spec-
ified. The default for NUMPART is 100, for SEED is 1 and for SIGMACUT
is 4. For particle distributions other than Gaussian, to obtain the same beam-

type processing (beam centroid etc.) and the same tracking sequence as applies

for GAUSSIAN tracking, specify BEAMTRAK and enter starting coordinates
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one-by-one using one START instruction per particle. An instance where this
might be found useful is modeling particle extraction, with only special parti-
cles, perhaps having large amplitudes, being launched. To do this, element type
XSEPTUM can be used. Attributes of XSEPTUM are defined under SPECIAL
TEAPOT ELEMENTS. If there is any XSEPTUM present in the lattice it is as-
sumed that BEAMTRAK=.TRUE. tracking is desired and EXTRACT=.TRUE.
turn-by-turn output files written. As explained with the XSEPTUM description
under Special Teapot Elements, the command CONTINUE can be used alter-
nately to contunue tracking the same particles as machine elements are varied in

small steps.

The coordinate system is defined in the MAD manual. The tracking out-
put contains pure horizontal and vertical displacements as default. For cou-
pled machines, if transformed-to-eigen-coordinates are required (so that linear
coupling does not contribute to “smear” for example) you should include an
“EIGENAMP” directive in “TRACK” or “TRACKCLO”. PX and PY are the
horizontal and vertical momenta divided by the reference momentum. DP is
the momentum deviation from the reference momentum divided by the reference

momentum. DL is the (negative) path length difference.

One START command is issued for each particle to be tracked. If a particle
leaves a circle of radius equal to APERTURE, or receives a kick which produces
a transverse momentum greater than the total momentum during tracking, it is
not tracked further. The parameter APERTURE describes the radius [m] of the
physical beam pipe and/or windows. The default value of APERTURE is 1m.
The coordinates of the particles at each turn are written to unit 8 (and unit 18,
28, 38, and 48 in some cases) (see Appendix B). Note that in the GAUSSIAN
and BEAMTRAK tracking cases, these files contain the average, or centroid, of
all the particles coordinates instead the coordinates of all the particles in the
distribution. For GAUSSIAN tracking two START commands are necessary, the
first specifying the conditions at the mean of the distribution and the second

specifying the rms beam dimensions in the form of x (EPSX) and y (EPSY)
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emittances (€), and the parameter P, (PH). The parameters are related by the

following equation:
¢; = e;(invariant) /v = =27 In(1 — P;,)o?/5;

These can be made to represent o2/3; by choosing PH=0.14714. The energy
spread (SIGDELTA) is defined as 0./ Fj.

To get first turn track output information at every element you should include
a “PRINTIST” directive in “TRACK” or “TRACKCLQO”; the output will be
called “firstturn.trk”. Note that this is disabled for gaussian tracking.

If there is any RFCAVITY present in the lattice it is assumed that the lon-
gitudinal position and momentum are to be tracked and output, turn-by-turn.

Otherwise only the four transverse components are tracked and output.

As an option, parameters USER1, USER2, USER3 can be used to introduce
definable parameters for use by special user-generated tracking code. NSPRSSMX
can be used to suppress printout of intermediate turns in long tracking runs.
Turns are printed out from the initial turn to endofbeg = (nturns - nsprssmx)/2
and from begofend = endofbeg + nsprssmz to the end. By default no printout is

suppressed.
TRACKCLO, see TRACK

TUNE
TUNE, MUX = <value>, MUY = <value>, K1F = <parameter

name>, K1D = <parameter name>

The TUNE command uses the matrix representation of the thin lens machine,
in which all elements are replaced by one thin element except quadrupoles of
TYPE=IR, which are replaced by four thin quadrupoles. The tunes are fit by
varying the parameters K1X and K1Y. This fitting compensates for the change
in tunes in going from the thick lens to the thin lens machine. The <parameter

name> can be a global parameter or an element parameter, for example, qf[k1].
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TUNTHOLD, see DECOUPLE
TUNETHIN, see DECOUPLE

TWISS

TWISS, [PRINT = {BEAMLINE, ELEMENTS}], [TAPE]

Twiss analysis using the matrix representation. Since all elements, includ-
ing dipoles are treated as thin, TWISS will agree with other matrix codes only
if the elements are adequately sub-divided. This typically requires special ef-
fort only for small machines with tunes significantly less than 10. In any case,
no subsequent TEAPOT operations rely on TWISS and, its further use beyond
confirming that the lattice file is more or less as expected is discouraged. Nev-
ertheless, a TWISS command should normally be included before MAKETHIN
to avoid certain (probably harmless) apparent discrepancies in the output print-
out. If PRINT is omitted, the results of the analysis are only printed at the end
of the machine. If PRINT = BEAMLINE is chosen, the Twiss parameters are
printed at the beginning of all sublines. PRINT = ELEMENTS causes printing
of Twiss parameters at each element. If TAPE is specified, the Twiss parameters

are written to unit 3 in a format similar to the MAD tape3 format (see Appendix
C).

USE

USE <machine>

Selects machine for subsequent operations.

WRITEFILE

WRITEFILE, { FAST, SLOW, COMPACT, SDSFILE }

WRITEFILE writes a file to unit 7 which describes the thin lens machine
(see Appendix A). The options are:

e FAST, the default, is unformatted.
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e SLOW, ascii, formatted, This file can be edited, but there is some loss of
precision due to truncation of the output format. The main value of SLOW
(or COMPACT) files is to acquire diagnostic information for checking the

calculations, or to change parameter values before subsequent processing.

e COMPACT, formatted, without the atw, btw etc. being printed out for

nonmagnetic elements; otherwise like SLOW.

e SDSFILE, a “Self-Descriptive Standard” file consistent with ISTK (Inte-
grated Scientific ToolKit.) This can be browsed and edited using the ISTK
tool called “sid”. At this time only sparc executables are included in the
software release, but they can be acquired for numerous other computer

3

architectures. If “sid” is used, it should be customized using the “.sidopt”

file.

If the purpose of the WRITEFILE is to generate a file that will later be used,
unedited, for input using READFILE, then FAST should be used. If both diag-
nostic printout and a file for later input are required, they should be generated
in two runs. For example the first run ends WRITEFILE[,FAST], its output is
saved, then the second consists only of

READFILE[,FAST]

ANALYSIS

WRITEFILE, SLOW or COMPACT

Probably the only instance in which the sequence WRITEFILE, SLOW then
READFILE, SLOW is really needed is to permit hand editing of a “fort.7”
file. Since this file is “flat” | sequentially numbered (rather than named) elements
can be located and modified. This could also be accomplished by breaking out
and naming the element in question in the standard input language file, but
that has disadvantages: it complicates the hierarchy of the input file and it may
necessitate repeating lengthy calculations. If the computer architecture being
used is such that an sdsfile can be edited using “sid”, Sds Interactive Dispaly, then
WRITEFILE, SDSFILE, followed by “sid”, followed by READFILE, SDSFILE



Page 40 June 12, 1996

is the procedure of choice.
VERSION

This command lets the user select a particuler version and must be entered

in the first line of the input lattice file.

The command usage : “ VERSION, 2.05 7 selects tpot version 2.05. If the
version command is omitted the default (2.1, at least in early 1993) is used.
Users with collimators in their input lattice files, for example, have to invoke the
version command and select 4.0, since the standard version does not allow for

collimators.
VSTEER, see HSTEER

ZWRITE

This command causes a ‘flat’ lattice description file called ‘zfile’ to be written.
This file can be used to submit the lattice, including any errors that have been
included, and any compensation that has been accomplished, to be transferred
to a parallel processing computer, such as a Cray or a hypercube for subsequent
processing. The output zfile includes sufficient headings to be self explanatory.
Further detail on content and formatting can be inferred from the file zwrite.f or

zwrite.c.
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APPENDIX A

FORMAT OF UNIT 7, THE THIN LENS MACHINE DESCRIPTION
Formatted Version: fileform = 2.1
line 1 file format—format: 8.2
line 2 version, date, time, jobname, seed, ‘random’ or ‘ordered’
ntot+1, nelem

format: 4a8,i8,a8,2i8

line 3 title—format: a&0
line 4 ‘initial '—format: a8
lines 5,6 x0, y0, z0, > 1, theta0, phi0, psi0

format: 1p4el6.9, 1p3el6.9

lines 7,8 betaxim0, betayimO0, alphaximO, alphayimO, xnuidealO, ynuideal(
format: 1p4el6.9, 1p2el6.9

line 9 keyword, elname, eltype, nmax (=max nonzero pole order)
format: a8, a8, a4, i4

lines 10-14 (bn, an, n=0,9), b01, a01, thklen
format: 4(5e16.9), 3e16.9,

line 15 Ax, Ay—format: 1p2el6.9

lines 16,17 X, y, z, _l, theta, phi, psi, thklen
format: 1p4el6.9, 1p4el6.9

lines 18,19 betaxim, betayim, alphaxim, alphayim, xnuideal, ynuideal,
format: 1p4el6.9, 1p2el6.9
(above 4 lines repeated for all thin elements. drifts are
implicit.)

line n ‘endmach —format: a8

lines n+1,n+42 xf, yf, zf, Y"1, thetaf, phif, psif
format:1p4el6.9, 1p3el6.9

line n+3 orbit—format:1p4el6.9
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FORMAT OF UNIT 7, Unformatted Version, Fileform > 2.0

item 1 file format

item 2,3,4,5,6,7,8 version, date, time, jobname, seed, ‘random’ or ‘ordered’, nelem
item 9,10,11 totlen, totang, ntot

item 12 title

item 13,14,15 elkeyw, elname, eltype

item 16 nmax (=max nonzero pole order)
item 17,18 bn[0-9], an[0-9]

item 19,20 b01, a0l

item 21,22 Ax, Ay

item 23,24 X, Y, Z

item 25 suml

item 26,27,28 theta, phi, psi

item 29,30 ideal betax, ideal betay

item 31,32 ideal alphax, ideal alphay

item 32,33 mux/27, muy /2w

item 34 orbit(1-4), (only at beginning of lattice), fileform > 2.01

item 35 thklen, fileform > 2.02
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APPENDIX B

FORMAT OF THE TRACKING OUTPUT FILES, UNIT 8, 18, 28, 38, 48

1. Single Particle Tracking: (output on unit 8 only)

line 1 version, ‘tracking’, date, time, seed
format: 4(a8,2x), i8

line 2 title
format: a80
The rest of the file is free format.

line 3 nparts, nturns, betax, betay, alphax, alphay, Qx, Qy

Repeat for each particle: {

line 1 0 xi pxi yi pyi delta

(xi pxi yi pyi with respect to the last calculated closed orbit)
lines 2+ nturn xi pxi yi pyi (again wrt the closed orbit)

for as many turns as the particle survives
linen -10.00.00.00.0

after last turn if particle does not survive nturns turns
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2. Gaussian Distribution Tracking:

line 1  version, ‘tracking’, date, time, seed
format: 4(a8,2x), i8
line 2 title
format: a80
The rest of the file is free format.
line 3  nparts (=1) , nturns, betax, betay, alphax, alphay, Qx, Qy

[ for unit 8:

line4 0 x1 x2 yl y2 delta
(x1 x2 y1 y2 are the coordinates at monitors x1 and x2
with respect to the last calculated closed orbit)

lines 5+ nturn x1 x2 y1 y2 (again wrt the closed orbit) |

[ for unit 18:
line4 0 x px y py nsurv delta

(x px y py with respect to the last calculated closed orbit)
lines 5+ nturn x px y py nsurv (again wrt the closed orbit)

nsurv number of surviving particles at nturn |

Tracking output is written to unit 8 on each passage of the lattice starting
point. For BEAMTRAK tracking, only centroid values are printed. The same
printouts are available at up to four lattice locations, marked by TYPE=X1,X2,X3,
or X4; output goes to units 18,28,38 or 48 respectively. Eigencoordinates are not
available under BEAMTRAK tracking irrespective of the EIGENAMP directive.
Longitudinal coordinates are output if and only if there is an RFCAVITY in the
lattice. For BEAMTRAK tracking, for historical reasons only, the longitudinal
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output to unit 8 is suppressed, but output goes to units 18,2838, or 48 as re-
quested. To obtain output at a collimator one must introduce a marker to carry
the TYPE=X1,X2,X3, or X4. Otherwise doubled output results because the
collimator is replaced by two elements internally. A nuisance resulting from the
tracking output feature is that you get fort.18,28,38,48 files generated whether

or not you ask for them.
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APPENDIX C

FORMAT OF UNIT 3, MACHINE PARAMETERS FILE
(SEE THE MAD MANUAL)
RESULTS OF THE TWISS COMMAND (no errors)

line 1  file format
format: £8.2

line 2 version, ‘twiss ', date, time, jobname, seed, nonsense, npos
(one more than the number of elements)
format: 5a8, i8, 18, i8

line 3  title
format: a80

line 4  8x, ‘initial ’, 4x, 0.0, 0.0, 0.0, 0.0
format: a8, a8, a4, f12.6, 3e16.9

line5  zeros
format: 5e16.9

lines 6-8 alphax, betax, mux/27, nonsense, nonsense
alphay, betay, muy/2m, nonsense, nonsense
nonsense, nonsense, nonsense, nonsense, » |

format: 5¢16.9, 5¢16.9, 5¢16.9

the elements follow in order, multipoles only (no drifts) element data according
to MAD manual except length of all elements given as 0.5 meters due to a quirk

of the graphics program used to plot the Twiss functions.
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Repeat for

line 9

line 10

lines 11-13

line n
line n+1
line n+2

all elements: {

keyword, elname, eltype, length=0.5, eldata
more eldata

format: 2a8, a4, {12.6, 3e16.9/5e16.9
alphax, betax, mux/27, nonsense, nonsense
alphay, betay, muy/2m, nonsense, nonsense
nonsense, nonsense, nonsense, nonsense, » |

format: 5el16.9, 5e16.9, 5e16.9

final record is

nonsense, nonsense, nonsense

cos(mux), Qx, nonsense, $X max, nonsense
cos(muy), Qy, nonsense, 3y max, nonsense

format: 3e16.9/5e16.9/5e16.9
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APPENDIX D

FORMAT OF UNIT N, MACHINE PARAMETERS FILE
(SEE THE MAD MANUAL)
RESULTS OF THE ANALYSIS COMMAND (errors included)

line 1  file format

line 2 version, ‘twiss ’, date, time, jobname, seed, nonsense, npos
(one more than the number of elements)
format: 5a8, 18, 18, i8

line 3  title
format: a80

line 4  8x, ‘initial ’, 4x, 0.0, 0.0, 0.0, 0.0
format: a8, a8, a4, f12.6, 3e16.9

line 5  zeros
format: 5e16.9

lines 6-8 alphax, betax, mux/2n, etax, etax’
alphay, betay, muy/2m, etay, etay’
(closed orbit):x0, px0, y0, py0, >1
format: 5e16.9, 5e16.9, 5e16.9

the elements follow in order, multipoles only (no drifts) element data according
to MAD manual except length of all elements given as 0.5 meters due to a quirk

of the graphics program used to plot the Twiss functions.
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Repeat for all elements: {

line 9  keyword, elname, eltype, 0.0, alfaa, betaa, thetaa
line 10 badlocaa, alfdd, betdd, thetdd, badlocdd
line 11 alphaxim, betaxim, xnuideal, etam(1-2,ielem) [etax, etaxp]
line 12 alphayim, betayim, ynuideal, etam(3-4,ielem) [etay, etayp]
line 13 orbitm(1-4,ielem) [cloorbx, cloorbxp, cloorby, cloorbyp], suml
}

final record is
line n  nonsense, nonsense, nonsense
line n+1 cos(mux), Qx, nonsense, fx max, etaxmax
line n+2 cos(muy), Qy, nonsense, Sy max, etaymax

format: 3e16.9/5e16.9/5e16.9
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APPENDIX E

FORMAT OF UNITS 50, 51, 60 and 61, CPLTRK OUTPUT FILES

line 1

line 2

line 3

line 4
lines 5 - N
line N+1
line N+4-2

RESULTS OF THE CPLTRK COMMAND
These files can be displayed using xgraph
UNIT 50

Comment (‘TitleText: X at Y BPM interpolated from adjacent X BPMs’)
Comment (‘Markers: 17)
blank

(20

Comment (“”interp”’)
detector number, interpolated X at Y BPM for tracked particle with initial XKI
blank

Comment (“"actual”’)

lines N+3 - 2N+3 detector number, actual X at Y BPM

line 1

line 2

line 3

line 4
lines 5 - N
line N+1
line N+2

UNIT 51

Comment (‘TitleText: Y at X BPM interpolated from adjacent Y BPMs’)
Comment (‘Markers: 17)
blank

(20

Comment (“"interp”’)

detector number, interpolated Y at X BPM for tracked particle with initial XKI
blank

(%2

Comment (" actual”’)

lines N+3 - 2N+3 detector number, actual Y at X BPM

UNIT 60
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line 1

line 2

line 3

line 4
lines 5 - N
line N+1
line N+2

Page 51

Comment (‘TitleText: X at Y BPM interpolated from adjacent X BPMs’)
Comment (‘Markers: 1)
blank

(20

Comment (“”interp”’)
detector number, interpolated X at Y BPM for tracked particle with initial YKI
blank

Comment (‘" actual”’)

lines N+3 - 2N+3 detector number, actual X at Y BPM

line 1

line 2

line 3

line 4
lines 5 - N
line N+1
line N+4-2

UNIT 61

Comment (‘TitleText: Y at X BPM interpolated from adjacent Y BPMs’)
Comment (‘Markers: 1)
blank

(20

Comment (“"interp”’)
detector number, interpolated Y at X BPM for tracked particle with initial YKI
blank

Comment (“”actual”’)

lines N+3 - 2N+3 detector number, actual Y at X BPM
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APPENDIX F

DEFINITION AND USE OF TYPE CODES

Any lattice element can be assigned a type code consisting of up to four

characters, by including TYPE=‘xxxx" in the element definition. Upper and

lower case letters are not distinguished. The type codes recognized are:

ir

‘slnd”:

¢ x1’and ¢ x2%:

‘cnch’ or ‘cnce’:

causes a quadrupole to be split into four thin quadrupoles.

causes a sign reversal of the y component of the deflection in

a solenoidal type element. See Appendix G.

mark the positions of beam position monitors at which par-

ticle coordinates are recorded during tracking.

mark the ends of sectors for which transfer matrices are to
be calculated. The presence of even one such element in
the ring causes the precalculation during every ANALYSIS
operation of the transfer matrices between all successive pairs
of x2, cnen, and cnce elements and the origin; (if there is
an x1 element it is assumed to be at the origin.) During
tracking, concatenated tracking begins at every cncb element
and regular, exact, element-by-element tracking begins at
every cnce element. A cncb element is implicitly assumed to
be present at the origin if there is any cnc® element explicitly
present. A flow chart typed as a comment in the code can
be referred to for further information. The purpose of such
concatenation is to increase the tracking speed (by big factors
of like 10 or more depending on the lattice) through sectors

known to include no ‘dominant’ nonlinear elements.
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‘cpla’ and ‘cpld’:

‘khka’ and ‘khkd’:

‘kvka’ and ‘kvkd’:

‘nofo’:

Page 53

mark the locations of coupling adjustors and couplingdetec-
tors respectively. Their presence cause precalculations to be
performed during every ANALYSIS command so the com-
mand DECOUPRT can set the adjustors, based on informa-
tion obtained at the detectors. See Appendix G.

mark the locations of horizontal steering adjustors and de-
tectors for orbit flattening just like the above described for

decoupling. See Appendix H.

mark the locations of vertical steering adjustors and detec-
tors for orbit flattening just like the above described for de-
coupling. See Appendix H.

causes the zeroing of the by; multipole of an SBEND element
(see SSC-52, p13) thereby permitting the representation of
a rectangular bend element of very short length. It is not
to be used to represent RBEND elements of finite length;
the slanted ends should instead be represented by standard
MULTIPOLE elements or, effective Oct.’94, by RBEND ele-
ments. (Note that the limit as a SBEND element is reduced
to zero with the bend angle held fixed is not graceful, since in
that limit the dipole focusing effect becomes large, as it would
with an actual, infinite magnetic field, dipole.) A solenoid of

type=nofo is a pure rotater, with no focusing action.
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APPENDIX G

COUPLED BETATRON MOTION. FORMALISM

A general description of coupled betatron motion is given, first in a four com-
ponent and then in a two component formalism. The state of coupling around the
ring is represented by generalized Twiss parameters as well as the parameters of
the two eigenplanes. A prescription for adjusting correction elements to achieve
decoupled motion is given. These formulas have been incorporated in the acceler-
ator modeling program teapot for which this, the first part of a two part report,
is an appendix. It includes the prescription used for adjusting coupling correction
elements to decouple the motion, based on diagnostic information obtained from

beam position monitors.
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1. Introduction.

Various elements present in an accelerator such as skew quadrupoles, mis-
aligned quadrupoles and solenoids cause coupling between horizontal and ver-
tical betatron motions of the particles. Such motion in the presence of arbi-
trary coupling will be analysed. The 4 x 4 linear matrix description of coupled
betatron motion is, in principle, straightforward, but the absence of a simple
pseudoharmonic description like that available for motion in one plane is a seri-
ous impediment. To recover this simplicity of description it is highly desireable
that the lattice be approximately decoupled. For some of the more explicit and
more practical formulas in this report, mainly appearing in the later sections,
it is assumed that the coupling elements are weak enough that, perhaps after
preliminary decoupling with two skew quadrupoles, horizontal and vertical mo-
tion can be treated separately, with the other motion having only a perturbative
effect. This means that a particle launched with a purely horizontal deflection
will remain within a few degrees of horizontal for a full turn. The purpose of
this paper, as well as giving a general formulation of coupled motion, is to give
prescriptions for achieving this decoupling. These prescriptions are used in the

accelerator simulation program teapot.!

Formulas are given which are valid even with strong coupling; they can be
used for analysing the initial situation and for an initial global decoupling, say
with two skew quadrupoles, which is assumed to be sufficiently good to validate
some of the approximations made later. Traditionally a 4 x 4 formalism has
been used for the description of coupled motion and that path will be followed
initially. But even the fully general results will be re-expressed in 2 x 2 form.
For pedagogical purposes this paper will be self-contained so that derivations of
well-known formulas make up, loosely speaking, the first third of the paper,>3*
reformulation of results known in a different form the second third, and new

results the last third.

The paper consists of the following sections.
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1. Introduction.

2. General coupled motion.

3. Transformation to an eigenbasis.

4. Propagation of the generalized Twiss parameters around the ring.
5. Behaviour near the coupling resonance.

6. Solenoids.

\]

. Compensation of coupling.

Some notation to be used is

Q= Qi = tune = frequency in 1/turns
T

C=cospu; S=sinu

There will be various subscripts on these: x and y for horizontal and vertical, A
and D for eigenmotions close to horizontal and vertical respectively, and E for

externally imposed. e.g. Qp is the “tune” of an external shaker.

2. General Coupled Motion.

Initially we follow Courant and Snyder? closely, so as to have available the

main general results.

Letting x and y describe horizontal and vertical displacements from the
closed orbit, with p, and p, being the corresponding momenta, the transverse
phase space displacement can be represented by a vector(transposed) xXT =
(z,ps,y,py) = (z1,22,23,24). Using distance s along the closed orbit as the

independent variable, the equations of motion can be written in Hamiltonian
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form, with derivatives with respect to s being symbolized by primes, as

oOH oH
r_ : o 2t 2.1
T o, P Ox (2.1)
OH OH
= — y=—— 2.2

and the Hamiltonian H, in linearized approximation and using matrix notation

and the summation convention, is given by

1 1
H= 5XTHX = uilliz; (2.3)

where H;; is a symmetric matrix.

Aside. A common source of confusion results when the term “phase space”
is applied both to the z,z’ space and the z,p, space. The former is common
during practical operations but the latter, which we will stick to, is better for
preserving relativistic and Hamiltonian features in theoretical analysis. When
the absolute value of the particle’s momentum is preserved (e.g. because there
is no r.f. acceleration) as will be assumed in this paper, then the ratio p,/p is
(at least for small angles) approximately equal to 2’ and for most purposes that
identification can be assumed. This can be regarded as a choice of momentum

units for purposes of interpreting the formulas in this paper.

Introducing a matrix S given in one and two dimensions by

0 -1 0 O
0 -1 1 0 0 O
S = ; S = (2.4)
1 0 0 0 0 -1
0 0 1 0

Hamilton’s equations take the form

X'=SHX (2.5)
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Observe that

ST=—-8 and S?=-T (2.6)

From any two solutions X; and X» of (2.5) an expression
XTSX1 = —2opu1 + T1Pa — Y2Dy1 + Y1Dy2 (2.7)

can be constructed whose invariance follows from (2.5) and (2.6). Evolution of a

vector X from sg to s is described by a transfer matrix M,
X (s) = M(s,s0)X(s0) (2.8)

The invariance of X:)TSXl, when X; and X evolve according to (2.8), yields a

relation which the transfer matrix must satisfy
MTSM =5 (2.9)

which is called the symplectic condition.

For analysing stability the eigenvalues of M are of paramount importance.
That they come in reciprocal pairs can be seen from the following equations.

Assuming that ) is an eigenvalue of M and hence also of M7 then
det |[MT — XI| = 0. (2.10)
Multiplying by SM and using (2.9) yields
det|S — ASM| = 0.
Multiplying by S, using (2.6) and dividing by A yields
1
det |M — 11| =0 (2.11)

which completes the proof.
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The 4 x 4 matrix M can be partitioned in terms of 2 x 2 matrices

(¢ )
M = (2.12)
C D

A useful matrix operation is “symplectic conjugation” defined by
A=-5ATS (2.13)

For a 2 x 2 matrix

_ a b d b 11
A= = = A" det|A| (2.14)
c d —c a

The last expression is meaningful only if the determinant is non-zero. When

applied to the 4 x 4 matrix M the result is

M = ( D> (2.15)

But, because M is symplectic, one gets using (2.9) and (2.6) that SMTSM =
SS = —1I and, as aresult MM = I or

o b
Q)

M= M (2.16)

When written out explicitly this gives relations among A,B,C, and D which follow

from the symplectic condition:
AC = -BD = CA=-DB
AB=-CD = BA =-DC (2.17)
AA+BB=1 and CC+DD=1

These are not all independent. Omne useful result follows when one of the off-

diagonal sub-matrices, say C, vanishes, since then the other, B, must also vanish.
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Digression on determinants. Just in this section M will stand for an
arbitrary, not necessarily symplectic, matrix. There is no simple expression for
a determinant such as det |M| in terms of the sub-matrices A,B,C, and D unless
they have some special property which, for our intended application, will be the
case. In particular suppose that A = al; i.e. A is proportional to the identity.

One then finds that

det

B
D ‘ = det |AD — CB| [for A proportional to T (2.18)
To prove this one shows first that

det

0
‘ = det |A| det | D
D

and then

det

B 11
pl= det|A|det |D — CA— B|

(both true for arbitrary A.) The latter follows by multiplying M on the left by a

matrix whose determinant is one

1 0
—CALL 1

and the desired result (2.18) follows.

We can exploit the result of this digression and the earlier results by working
on the matrix

(2.19)

M+thw+M“:<A+A B+C>

C+B D+ D

This matrix exploits the fact that the eigenvalues of M come in reciprocal pairs

so that the eigenvalues of M + M are two doubly-degenerate values, each of
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the form A = X\ + A1, In the physically important case these sums will be real

even though the individual eigenvalues are complex and this will permit us to

complete the analysis without ever working with complex numbers.

The determining equation for the eigenvalues A is

(trA — A)I B+C
det _ =0
C+ B (trD — A)I

Result (2.18) is applicable and we get

0=|M+ M — Al
= |(trA — A)(trD — A)T — (C + B)(B + O)|

This simplifies further since both terms are proportional to I. Letting
_ c11 +bao  c12 — bio e f
C+ B= =
co1 — b1 co2 + b1 g h
_ h —f
Bw:( )

(C+B)(B+C)=(B+C)(C+ B)=(eh— fg)I =det|C+ B|I

we have that

and

as a result (2.21) yields
(trA — A)(trD — A) —det |C + B| =0

whose solutions are

Aap = (trA + rD)/2 £ /(trA - eD)2/4 + det |C + B

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

where A(D) goes with the +(—) sign if trA — trD is positive and vice versa.

This choice assures, for weak coupling, that A will correspond to x and D will
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correspond to y. In the physically important case the eigenvalues of M have

modulus 1 so that there are real angles 14 and up satisfying

Asp=Xdap+1/Aap=exp(ipap)+exp(—ipap)=2cos[taD (2.27)

In the special uncoupled case for which B and C' vanish these angles degenerate

into the horizontal and vertical phase advances p, and p, which satisfy
Agp=1trA, D =2cos iy = 2C0S L4 D (2.28)
From (2.26) and (2.27) follow the useful relation
(cos piq — cos up)? = (trA — trD)?/4 4 det |C + B| (2.29)

From these formulas it can be seen that the sign of the determinant det |C' + B]
has a special importance; if it is negative and the traces of A and D are equal then
pwa and/or pp will be complex, which implies instability. This can potentially

occur on “difference resonances” for which

Q: — @y = integer (2.30)
or on “sum resonances” for which

Q. + Q, = integer (2.31)

It will be demonstrated in section 5 that the difference resonances are inherently
stable and the sum resonances inherently unstable. Commonly accelerators (es-
pecially proton accelerators) are run close to a difference resonance (since areas
bounded by nonlinear resonances are largest there.) This is only possible because
the coupling resonance does not lead to instability though it can strongly influ-

ence the particle distributions. In what follows it will be assumed that operation
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is not close to a sum resonance (2.31) and some extra attention will be paid to
operation close to the difference resonance (2.30), especially in section 5 where

det |C + B| will be evaluated explicitly.

To determine the eigenvectors of M + M1 it is useful to represent a dis-
placement within the = phase space by x? = (z,p,) and similarly ¢ = (y,p,).

For eigenvalue A it is easy to check that the vectors

X —AITCL@
. _ tr
X = ( CoB ), Y’_.< ) (2.32)
ALtiDX 3

satisfy the equations

(M +MHX =AX; (M+ MYy =AY (2.33)

for arbitrary y or £. These are however not independent, as can be seen using
(2.24)and (2.25), and the same vector can be represented either as X or Y. On
the other hand, as mentioned above, in the case of weak coupling, the motion
labelled A is close to = and D is close to y. It is natural then to pick A4 in
defining X and Ap in defining Y. Toward this end we define 2 x 2 matrices R4
and Rp by

C+ B B+C

R = =
AT AL —trD’ D= Ap —trA

(2.34)

in terms of which independent basis vectors can be written as

X:< X ); Y:(RD€> (2.35)
Rax 3

From (2.26) one can see that
Ay —trD = —(AD — tI“A) (2.36)

from which it follows that

Rp=—Ry4 (2.37)

The two components of x can be chosen independently to give two independent
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eigenvectors each appproximately horizontal and expressed in the form X and
similarly for Y (near vertical). In the next section such a specific choice will be

made.

If R4 were proportional to the identity then the vector X would be inclined
relative to the horizontal by a small angle arctan[/det |C' + B|/(A4 —trD)]. But
that is not normally the case and the eigenmotion is not restricted to a single
plane. Rather the x and y motions resemble the electric field vectors in elliptically
polarized light; this analogy will be developed further below, as will the geometry

of the motion.

It is conventional®* to define an angle ¢, which for weak coupling is loosely

similar to that proposed in the previous paragraph, by

2¢/ B
tan 29 = 2V det|O+ B (2.38)

trA — trD

This definition is motivated by formula (2.29) which can be regarded as a kind

of Pythagorean relation as shown in the figure.

2|cos(muA)-cos(muD)|

2|C+BINL/2)

[trA-trD|

Figure 2: “Pythagorean triangle” of parameters for nearly equal tunes.

The angle ¥ does not have a simple orientational interpretation. Shortly a

different angle which specifies the orientation of an eigenplane will be introduced.
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If the uncoupled tunes are brought close together (by adjusting the normal quads
in the ring) the angle 24 increases and approaches 7 /2. By (2.29) or by the figure,
the eigenfrequencies cannot become equal. Their minimum separation is given

by

Vdet |C + B (2.39)

m(sinpa + sin up)

|QD - QA|m1?n =

A routine accelerator decoupling operation which depends only on having
a position detector and spectrum analyser capable of measuring Q@4 and Qp,
consists of empirical adjustment of regular and skew quads to minimize the tune
separation. It is then assumed that the small change of regular quads to bring the
tunes to their desired (normally not quite equal) values, re-introduces negligible
coupling. This maneuver by no means assures that the eigenmotions are hori-
zontal and vertical but, as we will see below, it does suppress resonant sloshing

between horizontal and vertical motion over many turns.

3. Transformation To An Eigenbasis.

In order to define Twiss parameters in a coupled lattice it is necessary to per-
form a linear transformation from the x,y basis to an eigenvector basis. Though
the eigenvalues are complex this transformation will be performed in this section

without use of complex numbers.

In a two component space basis vectors can be expressed as

X 1 A 0
X1=<O>; X2=<1> (3.1)

These can be used to define an x,y basis in the four component space.

;1) — X1 - 32 = X2 -8 = 0 O - 0 (3.2)
0 0 X1 X2
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Similarly, from (2.35), a basis of eigenvectors is

Raxa Rax2 X1 X2
(3.3)

where ¢ is a numerical factor yet to be determined. These bases are related by a

linear transformation

™ =G0 (3.4)

where summation here and in the sequel is assumed. A general vector can be

expressed in terms of either basis, yielding the equality

2t = X, 1
| (3.5)
= X; Gt

and from this the coordinates are related, in component and in matrix notation

by

v = X.Gri; r=GT'X (3.6)

By substituting from (3.3)into (3.4)one obtains

I R
al =g P (3.7)
Ry 1
Furthermore, using (2.24) one can check that the inverse of G7 is
(GT)H = Ap —trA I —Rp (3.
g(Ap —Ay) —Ry I

From (3.7) and (3.8) it is clear that the choice

|AD —tIA|
=/ — 3.9
g \ [Ap — Al (3.9)
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yields the relations

T =) =1 (3.10)

as well as

GT = (G (3.11)

which shows that G is symplectic, a result which will be essential in the next

section.

In the z,y basis the one turn map is given by (2.8)
T =Mz (3.12)
where z7 is the displacement after one turn. Substituting from (3.6) one gets
GTXt =MGTX (3.13)

which means that the transfer matrix in the transformed basis is

M = (GG = I —-Rp\[A B\ /[ I Rp
Ry I C DJ\Ry I

3.14
A0 (3.14)
=1 b
where
A=¢*(A+ BRy — RpC — RpDRy) (3.15)
3.15
D = g*(~RsARp — RyB+CRp + D)

Exercise. Demonstrate, using relations (2.17) ,that the off-diagonal elements of

(3.14) do, in fact, vanish. (I have only succeeded in showing it indirectly.)

From A and D the Twiss parameters in the eigenbasis can be extracted. The

determinants det |A| and det |D| must both be unity since they are equal to the



Page 68 June 12, 1996

product of eigenvalues, which is one. As a result A, for example, can be written

in “Twiss form”

Apn A\ [cospatoaysinug BAsin 14 (3.16)
Ay Ay —yAsin pa COS [bA — Qug SIN g '
where
pa = arccos(trA/2) (3.17)

It is assumed here that any ambiguity has already been resolved in (2.26). The
Twiss parameters are obtained from element-by-element comparison in (3.16)

and they are

fa=A/sinpg; va=—Ay/sinpa; g = (A1 —Ay)/(2sinpy) (3.18)

and similarly for D.

A given vector x will, in general, have non-vanishing components in both of
the eigenbases. The corresponding invariants can be evaluated using the inverse
of (3.6) to obtain X, followed by substitution into the relations which define

invariants in the eigenbases,

€A =7aX7 + 204 X1 X + B4 X3 (3.19)
ep =0 X3 + 2apX3X4 + BpX]

Finally we wish to characterize each of the eigenbases by a single orientation.
It has already been observed that such motion is not restricted to a single plane,
but rather the phase point moves on an ellipse in x,y space. It is reasonable to
characterize the orientation of the A-eigenbasis, by the angular deviation, 64, of

the major principle axis of the ellipse, away from the z-axis, and similarly for D.
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Exercise. With the eigenmotion given in the “pseudoharmonic” form

X1 =cosy

(3.20)
X0 = (SinlﬁA — oy COSQﬁA)/ﬂA

and with 14 regarded as a free parameter, substitute into (3.6) to express the

motion in the form

T = gcosyy (3:21)

y = geacos(iha+€q)

where
e = [Ran — (aa/Ba)Rara)” + (Rara/Ba)’
Ra12/84 (3.22)
R — (aa/Ba)Raro

€4 = — arctan

In section 7 equations like (3.21) will be interpreted as relationships between mea-
sureable quantities; they will serve a diagnostic purpose. Next find the equation

of the ellipse in question and show that its angle of orientation is given by

B 2[Ra11 — (aa/Ba) Ra1o]
1 —[Ra11 — (aa/Ba)Rai2)?> — (Ra12/Ba)?

tan 20,4 = (3.23)

The orientation of the other eigenaxis can be found similarly.

In general, the two axes are not orthogonal. Normally, since ideal behaviour
would have the eigenaxes exactly horizontal and vertical, the deviations of these
angles from zero can be regarded as a measure of the seriousness of the coupling.
On the other hand, tilt of the eigenplanes may be considered inoccuous and a bet-
ter measure might be the area of the eigenellipse which is equal to 7g?|R12|/54.
Notice, using (2.14) and (2.37), that Rpi2 = R419 which means that the areas
of the two eigenellipses are equal except for a coupling-independent (for weak

coupling) factor.
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4. Propagation of the Generalized Twiss
Parameters Around the Ring.

In an uncoupled machine the “pseudoharmonic” description is a representa-
tion in which the evolution of either of the transverse coordinates is represented
by the increase of a single angle, “the betatron phase.” We now obtain a similar

representation, valid even in the presence of coupling.

Consider two points in the ring labelled (0) and (1) and located at longitu-
dinal positions s(*) and s). Propagation through the region is represented by a

transfer matrix M (1) in the x,y basis.

+(1 = p7(01),(0) (4.1)

(01)

where, for the present discussion M 'Y/, is assumed to be known. The transfor-

mation (4.1) in general couples the two transverse coordinates.

If it is assumed that M (9 the once-around transfer matrix at (0), is also

known, then the once-around transfer matrix at (1) is given by
MO = pg01) 3700) 51 (01) (4.2)

In writing this we have exploited the fact that M (01) is symplectic so that formula
(2.16) can be used to obtain (M (D)1 as being equal to M) which can in turn
be obtained using (2.13). This circumvents the need for numerical evaluation
of the matrix inverse. With M) known the Twiss parameters at (1) can be

determined as in the previous section.

What remains is to find the generalized betatron phase advances in going
from (0) to (1). The coordinates X(©) and X in the eigenbases at (0) and (1)

can be obtained from the inverse of (3.6) . Tt follows that the transfer matrix
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from (0) to (1) in the eigenbasis is given by
MOY — (GIITYLL (0D GOT (4.3)

Since no propagation transformation such as this could mix the components

corresponding to two different eigenvalues, this transformation is block-diagonal.

(01)
MO — (A 0 ) (4.4)

0o pOy

Furthermore it was shown in (3.11) that the factors in (4.3) are individually
symplectic so that (4.4) consists of two 2 x 2 transformations of the form (3.16).
Unfortunately the phase angle i in such a representation is not the exact analog of
the betatron phase advance, except in the special case that the Twiss parameters

at (0) and (1) are the same.

The true betatron phase advance should behave additively as successive sec-
tions are concatenated. By analogy with the 2 x 2 uncoupled formalism?® the

transfer sub-matrix can be parameterized as

(M(COSWHH% smwA ) msmiﬁ}?l )
‘\/TﬂA(COS l/f () _ 1) sin w(OI))

(4.5)
where the missing element can be filled in to make the determinant equal to one.

Direct comparison yields

o (01)
Yy ) = arcsin —=2— (4.6)

Voo

which completes the determination of the generalized Twiss parameters for the

near horizontal eigenmotion. The D parameters can be extracted similarly.
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5. Behaviour Near The Coupling Resonance.

In section 2 it has been shown that the expression det |C' + B| is especially
important near the coupling resonance and here we will evaluate it in terms of
the strengths of an arbitrary number of thin skew quadrupoles in an otherwise
decoupled lattice. To simplify this calculation we use a well-known transforma-
tion of uncoupled motion in which propagation from point to point is represented

by pure rotation in phase space with the transfer matrix taking the form

( cos A SinA@b) (5.1)

—sin Ay cos Ap

where A1 is the appropriate = or y betatron phase advance in going from the first
to the second point. To achieve this one performs the following transformation

from X7 = (Cﬁ,pm,y,py) to XT = (faﬁm;g;ﬁy)

X = BX (5.2)
where

B:l: 0
B= (5.3)

0 B’U

11/2 0
B, = ! 5.4
| ( o /) o
1/2 0

Bl — ! 5.5
@ (—am L1172 ﬂxup) (5.5)

and similarly for y. In the new variables the z invariant emittance is given by

€r = 37 —|—]§3 and similarly for y. Defining ]\Z/, the once-around transfer matrix in



June 12, 1996 Page 73

this representation, by

5 A B
M= . . (5.6)
C D
one obtains
A=B'AB,
B =B+'BB,
- (5.7)
C :By CB,
117
D :By DB,

This will be called the circular representation. In this representation it is natural

to work with dimensionless skew quadrupole strengths given by

q= /BByl f (5.8)

where f is the focal length of the rotated (by 45 degrees) quadrupole since the

transfer matrix is given by

1 0 0 0 1 000

(BT 0) 0 1 1/f 0 (Bq%l 0)2 01 ¢q 0 (59)

0 B, 0 0 1 0 0 B 00 10 ‘
/f 0 0 1 g 0 0 1

The calculation of the transfer function once around the lattice proceeds by

evaluating expressions such as

cl S0 0 1 0 0 0 coSi 0 0
v =S CcL 0 0 0 1 ¢ O -Sict 0 0
o o0 C 5 00 1 0 o o C 5
0 0 -5, C;/\¢ 0 0 1 o 0 -5 C

(5.10)
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where the notation

My = Ha — [y

S, = sin i (5.11)
S! = sin !,

and similarly for y and for cosines has been used. In this notation 7 refers to the
trip from the origin to the i'th skew quadrupole and 7 refers to the trip through
the rest of the lattice back to the origin. The complete expression for M has
a product like (5.10) with a matrix for each skew element sandwiched between
appropriate rotation matrices. We will, however, keep only terms quadratic in
the ¢; factors; that is we make a weak coupling assumption, to be quantified
later. As an exercise the reader can assure his or herself that the expansion of
det |C + B| contains no terms linear in the ¢; and that the only quadratic terms
are included in (5.10). More accurately, one should say that all the skew quad
matrices should be set to the identity except one and in that one the diagonal

elements should be set to zero. Then one must sum over all skew quad locations.

With the notation of (2.12) and a certain amount of algebra one obtains

P < > q'iS%Cé 2 quS%Sé ) (5.12)
> 6CLCy Y aiCLS,

o ( 2 uS,Ch L aiS)S ) (5.13)
> 6C,CL Y aiCyS,

For the time being we can drop the tilde’s since det |C+ B| is equal to det, |é—|—§|
We get

det |C + Bl = qig[(S;Cs + CLS)(CIS] + SICY)
i (5.14)
= (9,55 = SuSNCCL — CLCY)]

L=y
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This can be manipulated further to yield the result
det |C'+ B| = qigjsin(u), — p})) sin(u), — s

+sin(uy + g, — i) sin(pe + pd — ul,)]

R o (5.15)
= aigi[(1 = C,C) sin(p), — py) sin(u), — pil)

+ S5y cos(p), — 1) cos(p, — pil)]

where S, , and C, , refer to propagation around the entire lattice. This expression
can be separated into squared terms, q?(all having the same sign), and crossed

terms g;q; (of either sign).

det |C' + B| = S5y Zq, +2ZM7

7>

X [(1 = CoCy) sin(ps), — py) sin(p, — p1l,) + 5.5y cos(p) — ) cos(u], — pt,)]
(5.16)

This formula makes it plausible that the sign of det|C + B| is the same as the
sign of S;.5,. That will now be proved.

A result such as that could only be true for sufficiently small values of the ¢;

and is only of interest near a resonance. Hence we set €, = C, = C and S, = 5,

and obtain
det |C + B| = S..5, [Zq, +22q7qj cos(A; — A)] (5.17)
1>
where A; = ,u’u — 1’ (At a sum resonance one would use Sy = —S, and obtain

a somewhat different expression.) We can define a skew quad “phasor” strength

Gi = ¢ exp(14;) and then obtain

det |C' + B| = S,.5,( th O d) (5.18)
;

The factor multiplying S,.S, is inherently positive which completes the proof.

We can now complete the discussion of sum and difference resonances begun in
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section 2. On sum resonances the factor 5,5, is negative and hence so also is
det |C' + B|. As we saw then, this causes instability on sum resonances. On

difference resonances 5,5, is positive and the motion is stable.

It can now be seen from (2.26) that, for the success of the experimental pro-
cedure of adjusting skew quads until the eigenfrequencies coincide, it is necessary
and sufficient that >, ¢; vanish. This can be accomplished by the empirical ad-
justment of any two skew quads in the ring, unless by chance they have the same

“phase”, which could perhaps occur because of the symmetry of their placement.

The formula analogous to (5.16) but valid near the sum resonance can be
applied to another important issue which is to estimate the strength of the sum
resonance caused by N random skew quads in the lattice. The crossed terms can
be expected to average to zero, unless there is a “structure” effect causing the

phases and strength’s to be correlated. Hence we get
det |C + B| ~ 5,5,V N < ¢*> > (5.19)

which can be used to obtain the “stop-band” width using (2.26).

6. Solenoids

Ordinarily skew quadrupole are present in an accelerator only unintentionally
unless they have been included to compensate for solenoids present for detectors

of particle interactions. In this section we analyse such solenoids.

Most magnetic elements in accelerators have only field components B, and
By normal to the central trajectory, but a solenoid (length L) has mainly a

longitudinal field B, given by

B.,=0 z< —L/2
=By —L/2<z<L/2 (6.1)
=0 L/2 <z

There will be an important end effect but initially we will calculate only the effect
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of this longitudinal field.

Consider a particle incident on this magnet with momentum and velocity

vectors given by

—

F=PL+D (6.2)

U:ﬁl—l—ﬁ”:ﬁcg/E (6.3)

In a paraxial approximation p ~ |- It is conventional to express the solenoid
strength by a factor K equal to (ZR())Ll where Ry is the cyclotron radius if the

full momentum were transverse (p; = p.)

1 _ CB[)

K=— =220
2Ry 2pc/e

(6.4)
In transport notation let the incident vector of the above particle be given by
(0,2',0,0)7 so that its transverse momentum is given by p, = 2’p and it follows
a spiral whose radius is R| = z/(2K) with a transverse speed given by 2'pc?/E.
The time spent in the solenoid is L/v) ~ LE/(c?p). Labeling the angle through
which the spiral turns by 26 as shown in the figure, and combining the above

formulas one obtains the result that

0=KL (6.5)

The output coordinates are given by

xout == .T/CS/[(

o (6.6)
Your = —2' S* /K

where C' = cos KL and S = sin K L. Similar calculations for the dependence on

y' as well as calculation of the output values of 2’ and 4’ show that linearized
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X' [/(2K)

P 2

X' CSK

X

Figure 3: Solenoid trajectory viewed from downstream.

propagation through the solenoid can be represented by the mapping

x 1 CS/K 0 S*K T
! 0 C>2-5%2 0 208 '
= . ) (6.7)
y 0 -S?/K 1 CS/K y
2 2
y out 0 —-208 0 C*-5S Y in

As mentioned above, however, we cannot, to the accuracy we are working, ignore
end effects. At the ends there will be z and y components of magnetic field which

can be approximated as

B, = a(z)x; By, =a(z)y (6.8)
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where a(z) is a factor which can be obtained from the actual field component
B, which presumeably falls off more slowly than is given by (6.1). These field

components are related by

0B, 9B, 0B. 69)
ox oy 9z .

When integrated from well outside to well inside the solenoid this yields

(LL/2)+
/ a(z)dz = _TBO (6.10)
(LL/2)L

Neglecting the length of the interval over which the fields are changing, the end
can be represented by a transfer matrix resembling that of a skew quadrupole as
in (5.10) but with one sign reversed. For example a particle with input vector
(2,0,0,0)7 acquires a vertical deflection given by

cBy/2
pc/e

Ay = - r=—-Kzx (6.11)

and similarly for (0,0,y,0)”. When this is represented as a transfer matrix and
the output is also then, when combined with (6.7), the full transfer map for the

solenoid is

1 0 0 0\ /1 CSK 0 S?K 1 0 0 0
0 1 -K of[0 ¢c>-8> 0 2CS 0 1 K 0
0 0 1 oflo —-S?K 1 CS/K 0 0 1 0
K o0 0 1/\0 -2¢8 0 C?-5? -K 0 0 1

Performing the multiplication yields the solenoid transfer matrix

wo (O S\(E 0 .
*"\-s ¢)\o E (6:12)

( C S/K)
E= : (6.13)
-SK C

For a “thin” solenoid (which in high energy accelerators is what they almost

where
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always are) there is a simple way in which it can be represented by a thin “multi-
pole”, call it R; sandwiched between two drifts of length /2, call their transfer

matrices Ry 5 = (1. R, is given by

CM  SM c S M 0
Rt:ew:< >:( )( ) (6.11)
-SM CM -5 C 0o M

where the matrix M is given by

(1 —L/2>< C S/K) <1 —L/2>
M =(El = . (6.15)
0 1 -SK C 0 1

To consider the possibility of breaking the solenoid into shorter lengths one can

let L become small while holding K fixed; in that limit

(6.16)

<c+%s %(S—K’L)—!—%L?S> < 1 o)
= — .

~-KS c+ELs ~K2L 1

This has the satisfactory property that x and y are both continuous as a particle
passes through it which makes it a “kick” and hence symplectic. Of course the
drifts are also symplectic. This means that a solenoid can be made into multiple
“thin” elements by breaking it into shorter lengths. In practice, this is probably
academic because realistic solenoids really are thin in the sense that K L is much
smaller than 1, and in any case breaking the solenoids into lengths shorter than

the distance over which the end fields fall off would be illusory.

In this way we see that solenoids can be replaced by thin elements in the same
spirit as other elements are in the program teapot, with symplecticity preserved,
tracking being exact in the thin element lattice, and more faithful representa-

tion of thick elements resulting from breaking them into thinner elements. The
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approximate thin element transfer matrix is

1 0 0 0
C S ~K2L 1 0 0

R; = (6.17)
-S C 0 0 1 0
0 0 —-K2L 1

This is a lens which is focusing in both planes and has focal length (KZL)
followed by a coupling element which is a rotation by the small angle K L around
the longitudinal axis. The teapot code uses Eq. (6.17) which though approximate,
being the product of a pure rotation and an obviously symplectic transformation,
is exactly symplectic. As with other elements one can investigate the accuracy of
the approximations by splitting a solenoid into shorter solenoids. Normally the

dominant effect of a solenoid is the rotation.

7. Compensation of Coupling

Returning to equations (5.12) and (5.13) and incorporating the results of the
previous section on solenoids we can express the requirement that the lattice be
decoupled at one point by the requirement that the four elements of C' + B each
vanish. This will be much stronger than the condition that det |C' + B| vanish,
which, in section 5, was shown to be necessary for the tunes to be brought into
coincidence. At the location of a detector (label it d) one attempts to reduce the

“off-diagonal matrix”

C+ B (RAll(d) RAlg(d)> BLa) <Zq¢fi(d) YqiUs(d) )B/.(d)

Ar=tD " \ Ran(d) Ram(d)) "\ SaVi(d) SWi(d)
(7.1)
where
Ti(d) =ﬁ (£S5 (d)CL(d) + CLL(d) S} (d)]
) &€ Y 7 | ) | (72)
0d) = 57—y (ESH (@) - S1d)S, (@)

and there are two similar equations for V;(d) and W;(d) which will not be needed
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in what follows. Performing the matrix multiplication in (7.1)and using an ad hoc

abbreviated notation we obtain

Raint Raz) ;/2 0 T U L1/2 0
: : —oy 5y B\ W) N 8

o . . 7.3
( 1%1/2 ;/Z(T—FO&:EU) ;/2 ;/QU> (7.3)

This performs the transformation back from the circular representation to corre-

late with formulas in sections 1-5.

Various features of these equations have to be explained. The “off-diagonal”
matrix R4 has been reintroduced from (2.34) and evaluation of its elements in
terms of coupling strengths ¢; is from (5.12) and (5.13). The =+ option distin-
guishes between skew quads and solenoids as was described in the last section
with the 4 sign being appropriate for skew quads. The index d has been intro-
duced since these conditions may be applied at various locations d in the ring
where the state of coupling can be measured. New symbols for the trigonometric
functions have natural meanings such as S (d) = sin(uy — ,LL’U + ,Lbz)7 if ,u’,j > ,ujf
For y betatron motion f, is the phase advance around the whole ring and ,ug — ,LLZ
is the phase advance from the detector location d to the skew element location .
This amounts to setting the origin at d in the formulas derived up to this point.
Care must however be taken in evaluating (7.1) since the rotation angles in (5.10)
were implicitly assumed to be positive. To make ,u]y — ,u‘,j always positive (and
similarly for x), the route from the detector to element i should always be in the

same, say clockwise, direction.

For these formulas it is assumed that the coupling is weak enough that terms
beyond linear in the ¢;’s can be neglected. Also, in evaluating the various fac-
tors, the unperturbed phase advances and Twiss parameters are assumed to be
available and reliable. (As mentioned before they include the focusing effect of
solenoids.) In a real accelerator with errors these requirements would not neces-

sarily be met.
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We now consider the application of these relations to the decoupling of an
accelerator. In the sums appearing in (7.1) some of the ¢;’s are presumeably
unknown while others (call them g, with a standing for “adjustor”) are adjustable

skew quads at locations labeled a. Separating these off the elements of R4 can

be written
RAll(d) All +Zq(1 a
a=1 (74)
RAlg(d) A12 +ZQa a
where
Tu(d) =B (d) 8, () [T (d) + v (d) U, (d)]
’ (7.5)
U,(d) =52 (d) 8y (d) U, (d)

where there are IV, adjustors in all and again only two of the four matrix elements

have been written. Unknown couplers have been lumped in the terms Rffl)l(d)

and Ri&)Q(d).

As usual with correctors there are various ways of proceeding. One idea
(which is only rarely a good one) is to write as many conditions as there are ad-
justors and solve the resultant equations (7.1) for the adjustor strengths to make
R4 vanish. We will proceed instead with a least squares prescription defining

and then minimizing a “badness function”

B(q1,....qn,) ZeA (d)/8,(d) (7.6)

where e%(d) was defined in (3.22). Recall that e, is the directly measurable
ratio of “wrong-plane amplitude” to “in-plane amplitude” for an eigenmotion.
The S ratio converts this to an emittance ratio which results in all detector mea-
surements having comparable weight in the subsequent fitting procedure. The

badness is also approximately the appropriately normalized sum of the squares
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of the elements in the upper row of R4 summed over all of the N; detector lo-
cations. The reason that only these elements are used can be understood by
reviewing the exercise at the end of section 3. In that exercise it was shown
that those two elements can be extracted from measurements with the monitor
at location d. The lower-row-elements are related to slopes at d which are not
directly measureable. It will be seen below that the explicit solution depends on
having measured K411 and R 419 individually, even though it is only a sum of

their squares which enters B.

Values of q1,...,qn, will be sought which minimize the badness B and that

leads to the conditions

oB
oqa

0, a=1,..,N, (7.7)

It is assumed that there are at least as many measurements as there are adjustors.
(That is N, < 2Ny.) By working with two detectors which are close to each
other and are known to have no coupling elements between them, reduction of
the other two elements of R4 could also be enforced. Alternatively, the sum of
squares in (7.6) could be extended to include them, but then the prescription

would probably not be practical in a real accelerator.

What follows amounts to solving the equations (7.7), with enough abbrevia-
tions being introduced to make the equations look tractible. Using (3.22), (7.4),
and (7.5), B can be expressed as a quadratic function of the unknown skew quad
strengths, which can be be represented as a vector Q = (qi, ..., qNa)T. Also define

a N, x N, coefficient matrix

Nzl

M= (M) = Z([Ta(d) - Ua(d)arzr(d)/ﬁm(d)} [Tb(d) - Ub(d)am(d)/ﬂx(d)}‘f'

d=1

+Uu(d)Ub(d)/ﬁz (d)) ﬁr(d)/ﬁll(d)
(7.8)
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and define a vector containing the inhomogeneous terms in (7.7)

Ng
V=) = =S ([RUL (@) = Ry (d)an(d)/Ba(d)] [Tu(d) = Ua(d)as(d)/Ba(d)] +
d=1

+ RO () U, (d)/82(d)]) B (d)/ B, (d)
(7.9)

Then (7.7) becomes MQ =V with solution

Q =My (7.10)
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APPENDIX H

LATTICE IMPERFECTIONS AND THEIR COMPENSATION

1. Introduction.

This appendix has been copied from another source. The early sections have
been left in for coherence even though the material is not that germane to the

operation of teapot. The relevant material begins in Section 4.

In these notes some of the more elementary possible lattice defects will be
analysed and methods will be described which can be used to compensate for
them. In order to perform such compensation it is first necessary to have instru-
ments present to measure the deviation from design values. We will adhere to a
notation in which the letter d (for detector) is used as the index identifying such
detectors, there being N, detectors altogether. The other requirement is to have
N, elements (a for adjustor) which are to be set based on the detector readings
to give a “best” compensation. Though it is not the only possibility we will
describe only methods for which “best” means a least-squares minimum solution

and there will be at least as many detectors as there are adjustors. (Ng > N,)

Emphasis will be placed on defects of periodic lattices. Any circular accelera-
tor satisfies this requirement, at least once a circulating beam has been achieved.
Another important problem is the adjustment of finite nonperiodic lattice sec-
tions. The terminology “open sector” will be used to refer to such a section of

beam-line.

Since the most important parameters of an accelerator are its tunes, it is
appropriate to analyse first those errors which affect them. It is, however, eco-
nomical before that to derive a general formula which can be used to analyse
any perturbation of an otherwise ideal lattice; that will be done in Section 2,
and the formula used to calculate the local closed orbit shift caused by a dipole

perturbation. In Section 3 “The Golden Rule”, which gives the tune shift caused
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by a change in quadrupole strength, is derived. This is used to perform those
tune adjustments whose importance was just emphasized. During accelerator
operations it is customary to fix the tunes first thing and to reset them every
time any subsequent adjustment causes them to shift. This places a very reliable
constraint on the lattice functions, which are used in calculating subsequent ad-
justments, thereby enhancing confidence in the validity of the procedures. The
next most important lattice adjustment is the adjustment of the beam orbit
onto the centerline of the magnetic elements. Bend errors in the dipole elements
and survey errors in quadrupole placement are normally the dominant sources
of closed orbit errors. To simplify the analysis an algebraic transformation to a
“circular” representation of betatron motion is described in Section 4; it is used
to propagate the closed orbit around the ring in Section 5. In Section 6 closed
orbit adjustment is described and in Section 7 the adjustment of the central orbit

through open sectors is described.

2. A Difference Equation Which Describes
The Effect of a Single Bend Error.

Let us suppose that there is a zero-length perturbing element in the ring at
a point which, for now, we take to be the origin. On the t’th turn it causes a
deflection given by Ap,;. Here, for definiteness, we are working explicitly with y
motion but the formulas apply equally to x. Propagation once around the ring

is described by the transfer map in “Twiss form”,

( y ) B (Cy + aySy BySy ) < Y ) (2.1)
. — Ap, /2 o\ =S, C,— S, .+ Ap, /2 '
by py/ P Yyry y YRy by py/ ;

and a similar equation can be written for backwards propagation from ¢ to ¢t — 1.
Note that p, is evaluated at the middle of the perturbing element; it is necessary
to be specific about this since p, varies discontinuously in passing through the

element. With p standing for the tune @) times 27, we are using the notation
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Cy = cos uy and S, = sin u, and are intentionally using the subscript ¢ as a turn
index to be suggestive of the time measured in units of the revolution period. It

will however always be an integer. For these two maps the top equations are

Yi+1 = (Cu + vy Sy)yr + 6’1/5:1/(17?/ + Ap;u/Q)t

(2.2)

yi11 = (Cy — aySy)ye — BySy(py — Apy/2)s

By adding the equations (2.2) one eliminates p, and obtains
Yt+1 — Qnyt + Y11 = 5;1/SyApyt (2-3>

After solving this for y; it will be possible to obtain p,; from the equation

Vi1 — Y111 — 20Syy
Pyt =
2By Sy

(2.4)

which is obtained by subtracting the equations (2.2).

Initially we will analyse the effect of a constant bend error so the deflection
APy will not, in fact, depend on ¢, and hence will be symbolized by AP,. The
term on the rhs of (2.3) can be called an inhomogeneous term while all terms on
the lhs are homogeneous. As with differential equations the solution will be the
sum of a definite solution of the inhomogeneous equation plus the superposition
of any solution of the homogeneous equation. We know that the latter solution
corresponds to free betatron oscillation which is not presently of interest, and we

set it to zero. Solution of the inhomogeneous equation is trivial, with the result

Sy /2
Y= 5:U%Apy (2.5)

and using (2.4) the slope at the center of the perturbing element can be obtained

Sul2

=ye) Dy (2.6)

Dy = —Qy

The displacement y is continuous across the thin bend element but there is a

kink in the slope as shown in the figure.
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An important feature of closed orbit deformation by bend errors can be in-
ferred immediately from (2.5) and that is that the deformation becomes arbitrar-
ily large when the cosine of the tune C, approaches 1. This occurs when the tune
approaches an integer and is a manifestation of the so-called “integer-resonance”.
When the tune is an exact integer both the particle coordinate and slope repeat
exactly after a full turn so that the deflection Ap, accumulates every turn; a
divergent process. Resonances are the natural enemies of accelerators; they are
always due to the accumulation of undesireable behavior over many turns. Since
a particle in an accelerator circulates without damping for so many turns it is
highly susceptible to this. This integer resonance is the most elementary and the
most lethal of such resonances. Even when the cosine is not exactly 1 the pres-
ence of the factor 1 — C, in the denominator of (2.5)leads to a strong sensitivity
of the closed orbit to bend errors for tune values close to an integer, and for that

reason, such tune values are normally avoided.
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3. The Golden Rule Relating Quadrupole Perturbations and Tunes.

Starting from the difference equation (2.3) which relates the displacements
on three successive turns the tune shift due to a quadrupole perturbation can be
obtained directly. The deflections suffered by a particle as it passes through an

erect thin quadrupole of focal length f are given by

Aprm‘, :(QT/ﬁT)'If

(3.1)
Apy :(Q-y/ 6y)yt
where “normalized” quad strengths ¢, and g, have been defined by
qx :ﬁL/f
(3.2)
Gy =—By/f

These are dimensionless. If f were the focal length of a regular arc quad then
¢- and ¢, would be of order 1 (worth remembering for the mental evaluation
of some of the following formulas), but the magnitude of a typical perturbation
where these formulas will be employed will be less by perhaps a factor of 100 or
more. The reader may be annoyed to see the intrusion of beta-functions into such
basic formulas but it can be further justified as follows. It is only for historic
reasons that a thin lens is characterized by its focal length. The inverse focal
length is more natural, being proportional to the lens “strength”, and the symbol
q is often used for that. As long as one is paying the price of introducing a new
symbol it seems sensible to obtain some further benefit. Working with dimen-
sionless quadrupole strengths symplifies many future formulas and incorporating
the minus sign at this point will save us from writing separate formulas for = and
y motion. As defined, for either plane, positive g corresponds to a defocusing

quad. When (3.1) is substituted into (2.3), the result is

Yir1 — 2Cy +yi11 = Squy (3.3)

where y can refer either to horizontal or vertical motion and it has accordingly



June 12, 1996 Page 91

been suppressed as a sub-script. Naturally C' and S are to be evaluated for the

corresponding tune.

In (3.3) the effect of the perturbing quadrupole is incorporated on the rhs
of the equation while the rest of the lattice is described by the lhs. But clearly
the rhs can be grouped with the second term on the lhs since they are both
proportional to y:. Since the coefficient of this combined term can be nothing
other than cos 27(Q + AQ), the cosine of the perturbed phase advance per turn,

we get

cos 2m(Q + AQ) = cos 27Q + ¢S/2 (3.4)

where AQ is, naturally enough, called the tune shift caused by the quadrupole
perturbation. This is an exact relationship, and it is simple enough, but an
approximate form obtained by Taylor expansion valid for small AQ is what is

normally used. That result is

AQ = -2 (3.5)

4x

This will be referred to as “The Golden Rule” as it is so simple and so important.
Notice that the result is independent of the location in the ring where the element
is placed, though a lattice dependent factor has been factored out in the definition
(3.2). Also note that a focusing quad in fact focuses, which shortens the betatron

wavelength and increases the tune.

If there are many small quadrupole perturbations ¢; then, to terms linear in

the ¢;’s, the tune shift is given by

AQ=- > a (3.6)

Commonly in a sum like this some of the terms, being due to errors, are unknown,
while others correspond to compensating elements which the accelerator operator

can adjust. Grouping the former terms and calling their sum AQ(), the tune
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shift is given by
1
AQ =AQY — —N "¢, 3.7
Q=A4Q 4W§q, (37)

where, as mentioned earlier, the subscript a is used for adjustors. This is the first
encountered, and the simplest, of the equations of this type which are used to
determine the settings of adjustors. If there is just one adjustor and it is desired

that AQ vanish, we get

q = 4arAQW (3.8)

To apply this formula AQ® would be measured using a beam position monitor

and spectrum analyser and ¢ would be set accordingly.

4. The Circular Representation of Betatron Motion.

We shall be analysing betatron motion in a lattice which has small devia-
tions away from the design elements and for that it is convenient to perform a
transformation of uncoupled motion in which propagation from point to point is
represented by pure rotation in phase space with the transfer matrix taking the

form

( cos Ay sin Ay ) (4.1)

—sin Ay cos AY

where A1 is the appropriate x or y betatron phase advance in going from the first
to the second point. To achieve this one performs the following transformation

from X7 = (CU,P:I:,y,py) to X7 = (537]5.7771&72%)

X = BX (4.2)

B= Br 0 4.3
~\o B, (43)

where
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1/2 0

B,=| 1.4

| (am 1172 ;/2) (4.4)
1/2 0

By = (_a 1172 +1/2> (4.5)

and similarly for y. In the new variables (which will be called the circular rep-
resentation because the phase-space orbit is a circle) the x invariant emittance

is given by €, = > + ﬁf and similarly for y. Defining the once-around transfer

YR 4.6
(3 1) o)

and the once-around transfer matrix in the new representation by

M= A0 4.7

A=B1AB,
11 5~
D =B;'DB,

matrix by

one obtains
(4.8)
In terms of the dimensionless quadrupole strengths defined in (3.2), where f is

the focal length of the quadrupole (which is assumed to be erect), the transfer

matrix is given by

1 0 0 0 1 0 0 0
(Bz 0) 1/f 1 0 0 (Bf 0)2 G 1 0 0 (49)
0 B, 0 0 1 0 0 B! 0 0 1 0 ‘
0 0 —1/f 1 0 0 g 1

It is difficult to maintain a sign convention which is universally regarded as natu-
ral and, for that reason, the reader has to take responsibility for getting the signs

right when these formulae are applied to an actual problem. In a later section in
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which skew quadrupoles and other elements which couple the x and y motions
are analysed this full 4 x 4 formalism will be re-introduced, but for now we can

analyse either the x or the y motion separately using a 2 x 2 formalism.

5. Propagation of the Closed Orbit Around the Ring.

Still assuming a single bend error the results of the previous sections can
be combined to obtain the closed orbit anywhere in the ring, since propagation
around the unperturbed lattice is indistinguishable from a free betatron oscilla-
tion. At this point we will simplify the notation a bit by suppressing the subscript
y but adding a new subscript ¢ which identifies the particular bend error in prepa-
ration for handling many such errors. Adapting (2.5) and (2.6) accordingly yields
the closed orbit coordinates at the center of and just after an element causing

deflection Ap; as

/2
i =Bi Ap;
Yi =By o AP
/2
= oy Ap; 5.1
p Qi AP (5.1)
s/2 1
i+ =(—ai—— + 5)Ap;
pit =(-air—5+5)Ap

We wish to propagate this closed orbit through the lattice to the location of a
position detector d. This is accomplished by transformation to the circular rep-
resentation followed by propagation around the ring using matrix multiplication.

Explicitly (yg,p4)" /Ap; is given by

8, 0 C(d,i)  S(d,q) g2 8,312
~aafy” 57\ =5y o) )\ ot B )\~ 4

(5.2)
where the notation is that C(d,i) stands for the cosine of the phase advance
¢q; from i to d and similarly for S(d,7). Some of the following formulas will

only make sense if ¢4 is nonnegative. Completing the matrix multiplications in
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(5.2)yields the result

ﬁ_( _[ﬁc(d i)+ S(d, )/ BiAp; /2

_ COs M/Q (]1 \/FA

281n/‘—

(5.3)

and a similar relation for p; which will not be as useful to us since the detector

at d measures y; not py.

As was done in the discussion of quadrupole perturbations we now super-
impose the terms from all bend errors after first segregating those terms due to

unknown elements from those due to adjustors, with the former being lumped

into a term yflo)/\/ﬂd.

Yd cos u/2—¢da)
e T o

6. Improvement of the Closed Orbit Using Steering Correctors.

In an accelerator there are invariably steering elements present for the purpose
of improving the closed orbit. In the design of early (and hence small) accelerators
bend and survey tolerances were held tight enough to to assure that the closed
orbit stayed within the vacuum chamber, but as the machines became larger
this became progressively more difficult. Fortunately it was also found to be
operationally easy to adjust steering elements based on the orbit measurement
by beam position monitors (bpm’s). That will now be described. Usually with
correctors there are various ways of proceeding. One idea (which is only rarely a
good one) is to write as many conditions as there are adjustors and then solve the
resultant equations (5.4) for the adjustor strengths to make y, vanish at each of

the detectors. We will proceed instead with a least-squares prescription, defining
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and then minimizing a “badness function”

Ng

B(Apy,..., Apy,) =Y yi(d)/B(d) (6.1)

d=1

Values of Apq,...,Apy, will be sought which minimize the badness B and that

leads to the conditions
oB _ 0o
OAp,

a=1,....N, (6.2)

It is assumed that there are at least as many measurements as there are adjustors.
(That is N, < 2N,.) By working with two detectors which are close to each other
and are known to have no bend errors between them, reduction of the the slope

pg could also be enforced.

What follows amounts to solving the equations (6.2), with abbreviations being
introduced to make the equations compact. Using (5.4) B can be expressed as a
quadratic function of the unknown bend strengths, which can be be represented

as a vector @ = (Apy, ..., ApNQ)T. Also define a N, x N, coefficient matrix

N(]

M= (M) =D (Tu(d)T}(d)) (6.3)

d=1

where

T(l(d) _ COSé,uS{jM_/gdu)\/E (6.4)

and define a vector containing the inhomogeneous terms in (6.2)
Ny (0)
Ya
=) —=Tu(d)
d=1 ﬁ(d)

Then (6.2) becomes MQ =V with solution

V=) (6.5)

Q =My (6.6)



June 12, 1996 Page 97

APPENDIX I

MODELING THE EFFECTS OF WIGGLERS
Weiru Wang and Richard Talman

An ideally designed wiggler would cause neither an orbit displacement nor an
orbit deflection, but that is not the usual situation. An even number of identical
but alternating poles cause no net deflection, but cause an orbit translation. An
odd number of poles could cause no orbit translation but cause a deflection. Only
by having half-poles at each end would one achieve both advantages. If (as we
assume) the wiggler designer was not far-sighted enough to provide this feature,
it is necessary for the lattice designer to provide extra steering as shown in the

figure.

An easy compensation is possible for a wiggler with an odd number of identi-
cal alternating poles, if there are steering elements just upstream and just down-

stream as shown.

The lower figure shows that one certainly does not want to insist on normal
entry to the first bend element. This, plus the fact that negative bend sec-
tor magnets, are at best confusing, suggests that wigglers are best modeled by
rectangular bending magnets, or “RBEND’s” as they are called in the standard
lattice description. For this reason TEAPOT was modified to accept RBEND’s
in January, 1994. RBEND elements cause vertical focusing but no horizontal
focusing. Upon deep reflection you are supposed to be able to convince yourself
that both + and — poles cause focusing (as contrasted to both defocusing, or

focusing/defocusing).

Tuning up TEAPOT to model wigglers must proceed by stages, and depends
on understanding the idiosyncrasies of the code. The most important of these is
that magnet elements such as SBEND, RBEND, QUADRUPOLE, appearing in

the lattice description, define the design orbit. No matter how mispowered such
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Figure 4: Steering effects of wiggler.

elements are, the code declares there to be no closed orbit deviations. (There
is, however, control on the global closed orbit in that deviations from once-
around closure, both in angle and position, are printed out.) When RBEND’s
are included in the lattice, they physically change the design orbit relative to
what it was before but TEAPOT (correctly) asserts that there are no closed
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orbit deviations (relative to what the input file has declared to be the desired
lattice.) If the geometry is simple, as in the upper figure, the external steering
elements can be dead-reckoned so that insertion of the wiggler plus steering has
no effect on the orbit (except for a small increase in circumference and the small

deviations internal to the wiggler.)

In the more realistic situation where there are not conveniently located exter-
nal steering elements it is necessary to use more remote steering to compensate
for the (inevitable) wiggler steering and/or displacement. If one wishes to use
TEAPOT to adjust this steering one must go through a first stage in which
the wiggler is modeled with HKICK elements. TEAPOT calculates deviations
from (what it assumes is) the design orbit, and if asked using HSTEER or OR-
BCHEAT sets nearby steering elements (type khka) to minimize the closed orbit
deviations at detectors (type khkd). At this phase the vertical focusing effect of
the wiggler will not yet have been correctly included because HKICK does not
include focusing. Once the HKICK settings have been determined, the HKICK
elements modeling both the wiggler and the external steering must be replaced
by RBEND elements. As mentioned before (except for the closure requirement)
TEAPOT will (misleadingly) declare that the compensation has been perfect,
and will indicate zero closed orbit deviations everywhere. This simply reflects
(as in true machine operation) that one has redefined the design orbit to be the
wiggler-on closed orbit. Sample files illustrating some of these procedures are in
$TPOT/ftpot/test/dat/wigg and $TPOT/ftpot/test/dat/wigg . The following

report by Weiru Wang gives the formulas used.

EFFECTIVE R AND T MATRICES FOR 3-D WIGGLER FIELDS

These notes describe formulas used for modeling wigglers in TEAPO'T. Since
longitudinal magnetic field components play an essential role, the traditional
magnetic field “multipole expansion” cannot be used, but a truncated Taylor
series can be. At this time it assumed in the code that the motion is fully rel-

ativistic. For application to proton accelerators it will be necessary to review
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the formulas and correct them as appropriate. The R and 7 matrices calcu-
lated here (and confirmed by Runge-Kutta comparison) have been incorporated
in TEAPOT. It should be appreciated that inclusion of this truncated approx-
imation is necessarily non-symplectic, which may invalidate long term tracking

results.

In Halbach’s approximation, the magnetic field components in the wiggler

are

ky . :
— sinh(k,x) sinh(k,y) cos(k,z)

B, =B
0 ,
B= By = By cosh(k,x) cosh(kyy) cos(k.z) (8)
k. . .
B, = —B()k— cosh(k,z) sinh(k,y) sin(k, 2)

Y

The wave numbers are related by
kI =k, +k,.

A complete wiggler is made up of numerous wiggler sections. In this report
one such period will be analysed and in a lattice description file there will be
one entry for each period. For example, for a CESR wiggler, there are twelve
periods. Consider a period centered on a symmetry point z=0 where B, = Bj.

as in Fig. 1 .

Each section contains a half pole on each end. When placed one after the
other, only the end sections are left with half poles. This may or may not
correspond to the actual hardware, but the present discussion assumes it to be
the case. (For the present CESR configuration it appears to be a reasonable

approximation.)

As a zeroth approximation, assume that the effect of the wiggler on the

motion of electrons is sine-like in the x-direction and negligible in the y-direction.

k
2(2) = 2ip + 25,2 + Ay cosg(%z)
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- Segtion ——

! !

half pole half pole

Figure 5: Section

y(z) = Yin + yvllnz (9)

Y (2) = Y

\ z=ct

Tin, xén, Yin s ?J;n are the initial values. Since the amplitude A, is to be regarded
as an input parameter for the wiggler it must be precalculated—the integral

over B, is easy for the equilibrium orbit if transverse velocity is neglected. The
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coefficient A, of the “ansatz” form used as zeroth approximation is

QCB()
A, = —0 10
"= GOk (10)

Corresponding to the displacements Eq. (9), the velocity components are

dr , kA

o= Tin€ L sin(k,z)c
. dy
v = % = y;nc (11)
dz
22— e
dt
Using the Lorentz force equation
d —
d—f = e’ x B (12)
the trajectory equation is
Ty Z
" 1" A cBo de dy
'z + =—| 5 = 1 13
vy (p()c/e)ky dt dt ( )
B, By B.

and the angular deflections are

cBy
Ag = —— ;szl + k, 1
(poc/e)k, (Wb v12)
¢By k2A
Ay = ——  (kyIs+ kot I} — 221
V= Goefeypy "B Rt =

where

l
L = /cosh(kg;x) sinh(kyy) sin(k.z)dz
1
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l
I = /cosh(kg;a:) cosh(kyy) cos(k.z)dz
1
l.
Is = / sinh(k;x) sinh(kyy) cos(k.z)dz (14)
11
l

Iy = /cosh(k;t:c) sinh(k,y) sin(k,2)dz
1
To evaluate the integrals I1 ~ Iy, we keep only leading terms for x — 0

2
cosh(z) — 1+ % and sinh(z) — z

Assume @, x| yin, Y., are small. Putting Eqgs. (9) into Egs. (14), and keeping
only first order terms, we obtain the quantities needed to determine the R-matrix

elements

2k,
k2
T A2k2 Tk2 A,
Ir =~ L2 mn e
2~ Tl
A:l:ﬂ-kwky)

)

[1 ~ y:”ﬂ(

[3 ~ ym(

[4 ~ ym(—)

Note that there is a (small) constant contribution to I». It presumably causes
a closed orbit shift that must, at least in principle, be compensated when the

wiggler ie turned on.

To obtain both R and 7 matrices we use Mathematica to perform the ex-

pansions and integrations. Truncating to quadratic order, the results are

Aot ARKD | AdKD KR o ATKIR) 2k o SBATENE)
mcBo 4k, 2k,
poc/e

R 8k, i3 Y 144%3
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2 421.21.2 P
n Aa:kmk’y 2 5Ail{3f 2

15
2ak3 Y T oag, Y (15)
Ay Ak Agk.  5A3KE.  A2kZk. 2 ,, BALL
By ok, ¢ 2 Y 614 7 1 YTV T e, Y
poc/e
Ak PAZk]
4 2 /+7T T ml‘/y/ (16)

X
BV T 1ok,

At the zero’'th order approximation, the transfer matrix is

1 z 0 0
cB3 71742.14;,;
R o pUC;)e - kz 1 0 O
(2) 0 0 ] ;
0 0 ¢Byo (77';1]:5? _ 7r/€22A,/,, ) 1

poc/e

For this report, the numerical parameter values used are
By =12T, poc/e =5x10°V, k, = 6.4m*!, k. = £/0.098m>", 4, = 1.4x10+ m.

These are the parameters used to describe the wiggler in the lattice description
file (with the exception that, since they are redundant according to Eq. (10), the

value pgc/e is neither required nor allowed in the input.)

The “analytic” linear transfer matrix is

1 0.196 0 0
2.02 x 105 1 0 0
~ (17)
0 0 1 0.196
0 0 —4.87 x 1013 1

From Eq. (15) and Eq. (16) we obtain the second order transfer matrix

0.0000 0000 0.0000 0.0000
0.0000 —0.5621 x 103 0.0000 0.0000

Trij = T (18)
0.0000 0.0000 0.6987 x 10 0.0000

0.0000 0.0000 0.0000 —0.1355 x 1011
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0.0000 0.0000 0.7277 x 1010 0.0000
0.0000 0.0000 0.0000 —0.6494 x 10+2
iy = 16
0.7277 x 10 0.0000 0.0000 0.0000
0.0000 —0.6494 x 1012 0.0000 0.0000

(19)
Alternatively, the transfer matrix can be obtain by solving the equation of motion

numerically.

" cBy _k_q
" poc/e k,
o By
 poc/e

k. k.
k—ySmSycz + k—yC};Syszx’)

This is an initial value problem that can be solved numerically by using the
Runge-Kutta method. The value A, = 1.4 x 10*m. Starting with different

initial conditions, we obtained the transfer matrix

dx dxo
dx’ _» da,
dy dyo
dy’' dy
1.0000 0.1960 0.0000 0.0000
2.0249 x 10+°  1.0000 0.0000 0.0000
- 0.0000 0.0000 0.99994 0.1960

0.0000 0.0000 —4.8778 x 10+?  0.99995

The vertical and horizontal focusing agrees very well with Eq. (17). It remains to

approximate the leading nonlinear deflection. The 7 matrix obtained by using
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Runge-kutta method is

0.8530 x 10+8  0.5621 x 1043 0.0000
Tiis = 0.5621 x 10 0.5508 x 1014 0.0000
' 0.0000 0.0000 —0.5788 x 1015
0.0000 0.0000 0.1354 x 101!
0.1907 x 106 0.1748 x 1017 0.0000
T 0.1748 x 107 —0.5621 x 103 0.0000
' 0.0000 0.0000 0.3405 x 1014
0.0000 0.0000 0.9086 x 1015
0.0000 0.0000 0.1454 x 1016
Tois = 0.0000 | 0.0000 0.6489 x 1012
' 0.1454 x 106 0.6489 x 102 0.0000
—0.5621 x 103  —0.5508 x 104 0.0000
0.0000 0.0000 0.7686 x 1016
0.0000 0.0000 0.7922 x 1017
Tuii = | 07686 x 1045 0.7922 x 1047 0.0000
0.2790 x 106 —0.6489 x 102 0.0000

June 12, 1996

0.0000
0.0000
0.1354 x 10!
0.2207 x 1012

0.0000
0.0000
0.9086 x 101°
—0.1354 x 101

—0.5621 x 10+3
—0.5508 x 1014
0.0000
0.0000

0.2790 x 1016
—0.6489 x 10+2
0.0000
0.0000

To;; and 7Ty;; are essentially in agreement with Eq. (18) and Eq. (19).

In TEAPO', since the wiggler section is treated as infinitely thin and at

the center of the range, only the deflection terms, Ro;, Rai, 72i;, 74i; have been

incorporated. (It can be seen mentally, from Eq. (17), that the off-diagonal terms

Ri2 and R34 account for the drift sections preceeding and following the thin

element.) The neglected 7i;;, 73;; terms (the largest being 7134) are numerically

small for typical lattice locations, but they could conceivably be important if the

wiggler were situated at a point of extremely small 5.
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APPENDIX J

COMPARING AND DEFINING MAGNETIC MULTIPOLES
RHIC/AP/99

June 1996
I. MAD and Teapot and
II. RHIC Measurements and Teapot
G. Trahern, F. Pilat

Introduction The definitions of the magnetic field in MAD and in the standard
multipole expansion (SME) used internally by Teapot are different. This note,
perhaps for the umpTeenth time, defines the relationship between the two field
definitions, assuming that they are in fact referring to the same physical quan-
tity. After this discussion we define the relationship between RHIC’s measured

multipole coefficients and those of Teapot.

B Field in MAD

The magnetic field in MAD is defined by a Taylor series expansion along the

x axis as!

N'V’I,ﬂv’(,’ 1
B%ADQ?’L

A
BYAP(z,0)= )" - (21)
n=0
The strength of a multipole, K,,, is defined to be
B/MAD
K, = ——, (22)
po/e
and thus BMAP can be computed as
877,BMAD
y

(W)m:y:()-
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B field according to the Standard Multipole Expansion

The true magnetic field of a physcial magnet can be described by a field
strength Bgme(m,y,z),B,fme(a:,y,z). The thin element model then expresses
this true field strength in terms of nominal field strengths B, (z,y), B,(z,y) as

/[33"“6(3;,%@ +iB (2, y, 2)|de = L[By(z,y) +iBu(x,y)]  (23)

where the integral is taken over the length of the magnet. The standard multipole

expansion for B, and B, is then given by?

N’III,”,I?
(LBy) +i(LB,) = (LB,) > (b +ian)(z + iy)". (24)
n=0

where we specialize to the case of a dipole. So B, is the dipole field strength
at the origin. N, is the highest order of multipole in the series expansion.
Defining R, + il, = (z + iy)" we can re-write the field components in the SM

expansion as

m aa

’y Z bVLRfL a/fl ¥ (25)

po n=0
ZL’ p()/e nz(] bflIIL + a’fl mn (26)
where
LB, ~ LB,
Qp = —=ap, by, =—"b,. (27)
po/e po/e

The scaling factors above are conventional, but the magnetic fields (3,;, By) SO
defined are just the deflections that particles experience passing through the
field, and the coefficients (ZL,,L,B,L) are the ones used directly by Teapot. The

factor of p,/e is often referred to as “Bp”. The following table? gives some
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explicit examples of the multipole expansion. Also note the traditional jargon
used there, e.g., Af is the “bend angle”, f is the “focal length” and S is the

“sextupole strength”, etc.

Relation between MAD K, and SME b,

Assuming that the field strength B, is the same physical quantity in either
representation, we want to find how K, is related to b,,. Using the definition in

terms of partial derivatives and noticing that

o1,
— )0 =0
(axn ) y=0
817/R’fl,
(W)T:”:U = n!
we see that
BMAD B Bn
K, = (——) =L, = nlb,. (28)
po/e po/e
The integrated strength is
B,L B,L
K, L= nlb, = ——nlb, (29)
Do/ Bp
and in terms of l;n,
Ky L =nb,. (30)

The above K, apply to the case of standard elements of length L. If one is
instead talking about MAD’s multipole element which is defined to have zero
length, replace K- L in Eq. (30) by K1, to get the corresponding MAD multipole

notation.

Skew components in MAD and SME

The definition of the magnetic field from the MAD documentation in Eq. (21)

explicitly excludes skew multipole moments, so it is not possible to derive a
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n R, I, by, (i, Az’ = —By Ay' = B,
Horizontal bend |0 1 0 A, 0 —Ab, 0
Vertical bend 0 Ad, 0 Ad,
Erect quadrupole |1 x Y g=1/f 0 —qz qy
Skew quadrupole 0 qs = 1/ fs qsy qsT
Ercct sextupole |2 | 22 —¢? 2xy S/2 0 —%(m2 —y%) %23{7}
Skew sextupole 0 Ss/2 %Q:Ly 75(5172 —y?)
Erect octupole |3 |23 — 329?322y — o3 0/6 0 — Y9 (23 — 3xy?) 9327y —y°)
Skew octupole 0 0,/6 %(3:1:2y — ) %(1:3 — 3xy?)
Erect decapole |4 |zt — 622y 4wy(x? —y?) | D/24 0 fﬁ(w‘l — 62%y? 4+ yt) %41 y(z? — y?)
Skew decapole 4yt 0 D,/24 345 dzy(z? — y?) % 2t — 622y + ¢

Table 1:
strengths

Deflections, Az’, Ay’, caused by standard magnets and notation for their
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relation between MAD’s way of defining skew multipole elements and SMFE’s a,,
directly unless one looks into the Teapot code itself. We have done this (with the
help of R. Talman). However, one can perhaps see the result on physical grounds
if one considers only a single multipole. One can ‘convert’ an erect multipole of
order n into its corresponding skew element by a rotation of the erect element
around the longitudinal direction by its natural symmetry angle of 7/(2n + 2).
In this way a pure erect multipole of order n becomes a pure skew multipole of
the same order. So one can conclude that a the strength of a skew element which
is defined in MAD by specifying a multipole of strength K/, = value and T,

(without a value) is related to Teapot’s a,, as

B,L B,L
[(qu skew _ 20 ! "= o | " 31
(Kw) pofe " Bp ey
and
(K1) = nla,. (32)

(If one is instead interested in skew magnets of finite length, then replace K1,

above by K- L as discussed earlier for the non-skew case.)

0.2. Aside: How does Teapot do it?

For those who might want to know precisely how Teapot transforms the MAD
input specification of multipole strength into the SME form, here is an example
of the (old) Fortran code that was used to do this transformation.(The C++
version of Teapot uses an equivalent formulation.) The example shown below is
for MAD’s octupole and general multipole. The relevant lines to focus on have

been indicated with arrow marks. The explanation follows the listing.

ELSEIF (itype .EQ. 7) THEN
C —---- "octupole"

3

nmax (ikelem)

-—> el

pdata(idp)
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thklen(ikelem) = el

-=> val = pdata(idp + 1)*el/6.

* ==k ang = pdata(idp + 2)*4.

-=> btw(3, ikelem) = val*cos(ang)
-=> atw(3, ikelem) = val*sin(ang)

typeaper(ikelem) = pdata(idp + 3)

xapsize(ikelem) = pdata(idp + 4)

yapsize(ikelem) = pdata(idp + 5)

xoffset(ikelem) = pdata(idp + 6)

yoffset(ikelem) = pdata(idp + 7)
mxstreng(ikelem) = pdata(idp + 8)

ELSEIF (itype .EQ. 8) THEN

C ---- "multipol"

POi=1,9

--> val = pdata(idp)/fact(i)
*—=D% ang = pdata(idp + 1)*(i + 1)

idp = idp + 2

-=> btw(i, ikelem) = val*cos(ang)

-=> atw(i, ikelem) = val*sin(ang)
IF (iptyp(idp - 2) .NE. -1) nmax(ikelem) = i
ENDDO

typeaper(ikelem) = 0O

Note: The variables atw(n, —), btw(n,—) in the above code have exactly the

same meaning as da,, b, in Eq. (27).

First we discuss the octupole case. In the above code pdata is the array con-
taining all the information gleaned by MAD’s parser from the original standard
input file. el is the length L of the octupole. val is a local variable which equals
K, * L/3!. ang is another local variable which in the case where one just spec-

ifies TILT without an argument is the default roll angle of 7/8 times 4. (This
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is the mysterious point. We only show how Teapot does this transformation,
we don’t explain the basis for it). One can see that 4 x 7/8 = 7 /2, and thus

btw(3,—) = 0,atw(3,—) = val = K, % L/3!.

Now that we’ve done the octupole case, consider the thin multipole case that
follows it. The meaning of the code variables is the same as in the octupole
case. Since thin multipole have no length, the code is simpler in some respects.
The variable ang specifies how the roll angle determines the strength of the skew
element. For example, in the case where one takes the default roll angle of 7/2i+2
for a skew multipole of strength K/;, one states 7; without an argument in the
input file. Then the value of ang = pdata(idp+1)*(i+1) = (7/2i+2)*(i+1) =
7 /2. This leads to values of btw(i,—),atw(i,—) of 0 and pdata(idp)/fact(i) =
Kl;/i!, respectively, in agreement with Eq. (32).

Relating RHIC’s Measured Multipole Coefficients to those of Teapot

The field expansion in Eq. (24) actually applies in general only to dipoles
since the central field value B, vanishes (or at least ought to) for other types of
magnets such as quadrupoles, sextupoles, etc. So one must adopt a different but
analogous convention for other magnet types. In chapter two of Ref. 2 there is
a clear discussion of one way to do this for the case of quadrupoles, and we can
compare that with the way RHIC describes a general magnet. The multipole

expansion for a quadrupole magnet from Ref. 2 is

. 83(‘2 N'm,um (m + Z.y)n
G : QN _ Y . 14 ¢ .
(LBY) +i(LBY) = (L= =)z + 1y +10 >~ (07 + mn?)W] (33)

n=>2
where R, is the reference radius where the measurement is made, and along with
R, the factor of 104 is chosen so that ag,?, bg are of order 1 for “bad”, low order
multipoles. The prefactor, in this case the field gradient, (83.3?/833)7;:y:(;), serves
the same purpose as B, in Eq. (24).

In general for every type of magnet, there is a formula of this type. The

prefactor like B(,(aBg/(‘?x) in the case of dipoles(quadrupoles) sets the scale
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so that the coefficients an,bw,(ag,bg) represent fractional deviations from the
measured field strength. A similar analysis can be done for the other types of
magnets. To summarize, the normalization of multipole coefficients via Eq. (33)

requires knowing the behaviour of the field at the origin.

In contrast to Eq. (33) RHIC has used a slightly different form to repre-
sent the multipole expansion for a general magnet. According to our sources
Refs. 3.4,5,and 6, there is uniform strategy for every type of magnet that is rep-
resentative of the way the magnets are actually measured. In the following we
will assume that the local coordinate system of Teapot and the magnetic mea-
surement system are the same. If this is not true, for example, if the magnet is
oriented differently in the lattice compared to the way it was measured, appro-
priate modifications to the sign of the coefficients will need to be made Ref. 6.
With this caveat, the RHIC convention for a magnet’s multipole expansion is

Ref. 5.

] J_ 777.(/.1‘ :E_'_iy)n
(LBy) +i(LB,) = LBR)NO S 0 +iad) 0 (3a)
n=0 r

where the superscript M in aM bM denotes the fact that these are measured
multipole coefficients. B(R,) is a normalization factor. This normalization is
chosen so that the magnitude of the term of order k& in the expansion, |b,{w +
iay, M| = 10* for a magnet with multipolarity 2(k+1). Consequently the multipole
coefficient, bk , for a “normal” or “upright” magnet of order k is 10%. T.e., béw for
dipoles is 10%, b{w for quadrupoles is 10%, and similarly for skew magnets so that

for a skew quadrupole a{w would be 10%.

Since RHIC normalizes its multipole coefficients in this way, comparison with
an expression like Eq. (33) for a specfic kind of magnet can be obtained by
evaluating Eq. (34) along the z axis near the origin. We will do this exercise
in the appendix, but it is not actually necessary. Teapot only requires that

the magnetic field be brought to a form like Eq. (24). Eq. (34) is already in this
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form, so making the correspondence with Teapot is straightforward up to possible
reversals in sign that are discussed in RHIC/AP/95, Ref/ 6 and summarized in

the next section.

The factor L B(R,) on the right hand side of Eq. (34) is measured at a fixed
current by the magnetic measurement group of RHIC and quoted as the Integral
Transfer Function or ITF, i.e., ITF-I = L B(R,), where I is the current in kA
at which the measurement was made. The reference radius, R, is also given for

each measurement.

The @, b, of Teapot are recovered from the above measured expansion coef-

ficients in analogy to Eq. (27) by

- ITF-1 10+ yM

b'n, - ( pn/e ) R;7 n (35)
ITF-T _10+4
n = ( D /6 ) Rn a% (36)

where the b%, a% are the measured multipole coefficients, p,/e is Bp, and I is

the current at which the measurement was made in kA.

In some cases, particularly for dipoles, the RHIC magnetic measurements
group does more detailed measurements of the magnetic multipoles. They mea-
sure them at the body center as well as the return and lead ends of the magnet. If
this group of measurements is available, a different form of the Teapot coefficients
is needed since the physical dimension of the measured multipole coefficients are
different for the body and end data.

7 Body ~Body
Qn,

If Body measurements exist, we specify body by, ", for Teapot as

BTF-I_ ITF 10MbMLBody: ITr-1 ﬁleBOdy (37)

ZN)BO(]y —
n ( p()/e )(BTF) R;} n ( p()/e ) R?’:L n

&B()dy — (BTF I)( ITF ) 10+ aMLBOd;y — (ITF I) 10+ aMLBody (38)
" Do/ BTF’ R " po/e R "

where BT'F' is the body transfer function with dimension Tesla/kA, and the
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superscript M — Body refers to “measured Body”. The factor of ITF/BTF has

dimension of length in meters and is needed to scale BT F' so that it has the
. . . . . M1 Body M1 Body .

dimensions of an integral transfer function since b; , Uy are dimen-

sionless.

If End measurements exist, then the lead and return end coefficients for

Teapot are given by:

BTF-T 10J_4bMJ_End

plmd — A 39
= (ST (39)
_En BTF-I 10t

a,,b: d _ (2220 M1End (40)

a,
pfe ) Ry "

where BT'F' is again the body transfer function referred to above, and note that

M1End ,M1End
b’n, y Ay,

in this case since the dimension of is in meters, only BTF

rather than I'TF is needed.

Afterward on Sign Conventions for Multipole Coefficients RHIC magnets are mea-

sured in a standard way, i.e., the lead end of each magnet is oriented with respect
to a local magnet coordinate system in the same way during the measurement
process. Thus the measured multipole coefficients are directly tied to the local

measurement coordinate system’s orientation.

During installation in the tunnel a magnet may need to be rotated by =«
radians around the Y axis relative to the coordinate system in which it was
measured either for physics or mechanical /installation reasons. In these cases the
sign of some multipole coefficients used in Teapot will need to change (relative to
their signs in the measurement database) to properly model the dynamics in the
global coordinate system used by Teapot. The nature of these sign changes has
been explained in Ref. 6, and we will not reproduce their detailed analysis here.
However, for purposes of keeping the definitions of Teapot multipole coefficients
in terms of RHIC’s measured values all in one place, we include the necessary

rules here. We thank Fritz Dell for the following formulation of these rules.



June 12, 1996 Page 117

The rules require an understanding of a magnet’s “orientation”. A magnet’s
orientation is defined to be positive if a positive displacement relative to the
horizontal closed orbit corresponds to a positive horizontal displacement with
respect to the magnet local coordinate system discussed above. Otherwise the
orientation is negative. See Ref. 6 for a clear statement of the definition of the
local magnet measurement coordinate system and its relation to the lead and

non-lead ends of the magnet.

. For Normal magnets whose main multipole is even (dipoles, sextupoles, etc.),
or for Skew magnets whose main multipole is odd (quadrupoles, octupoles,
etc.)

pM oM

0 s Oy As 1S,

e Positive orientation: use

e Negative orientation: change sign of b% with odd n, and change sign of
M

o with even n.

a

2. For Normal magnets whose main multipole is odd (quadrupoles, octupoles,
etc.), or for Skew magnets whose main multipole is even (dipoles, sextupoles,

etc.)

e Positive orientation: use b, aM as is.

e Negative orientation: change sign of b/ with even n, and change sign of

aM with odd n.

n
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Appendix Relating B(R,) to the Field at the Origin
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The normalizing factor B(R,) can be related theoretically to the value of the
field at the origin in the following way. From Eq. (34) the value of the integrated
field at y = 0 is

Nona "
(LBy +iLB,)|y—0 = L B(R,)[10"* Y~ (b} + ia%)ﬁ] (41)
n=0 r

For a “normal” magnet of order k, bM = 10%, a,]y = 0. Taking partial deriva-

tives k£ times, we have
" (LBy)

, by
T =m0 = RLB(R))10 (42)
o

RE’

Noting that 47 = 10* in the case of a normal magnet of order k, we find

0" B R}
B(Rr) - (Wlﬁy)h;:y:OE- (43)
For the case of a skew magnet of order £ a similar analysis yields
"B, R
B(R,) = (W)'x:y:oﬂ- (44)
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