
June 12, 1996 Page 1MANUAL FOR THE PROGRAM TEAPOTNONINTERACTIVE FORTRAN VERSION(THIN ELEMENT ACCELERATOR PROGRAMFOR OPTICS AND TRACKING)Lindsay Schachinger, Lawrence Berkeley Laboratory, Berkeley, CA, 94720and Richard Talman, Laboratory of Nuclear Studies,Cornell University, Ithaca, NY 14853The recommended procedure for acquiring the code is to communicate witheither of the above authors. The code and this manual can be obtained using\anonymous ftp", from hazel.tn.cornell.edu, 128.84.251.20. Assuming that theftpot release is to be untarred from a directory $HOME/tpot, proceed as follows:% cd $HOME% mkdir tpot% cd tpot% ftp hazel.tn.cornell.eduConnected to hazel.220 hazel FTP server (SunOS 4.1) ready.Name (hazel.tn.cornell.edu:talman): TYPE anonymous <cr>331 Password required for anononymous.Password: TYPE e-mail address <CR>230 Guest login ok, access restrictions apply.ftp> TYPE cd pub <CR>250 CWD command successful.ftp> TYPE ls <CR>200 PORT command successful.150 ASCII data connection for /bin/ls (128.84.251.20,1182) (0 bytes).ftpot.tar.Z226 ASCII Transfer complete.13 bytes received in 0.65 seconds (0.02 Kbytes/s)ftp> TYPE get ftpot.tar.Z <CR>200 PORT command successful.150 ASCII data connection for ftpot.tar.Z (128.84.251.20,1183) (3081895bytes).226 ASCII Transfer complete.local: ftpot.tar.Z remote: ftpot.tar.Z3095826 bytes received in 20 seconds (1.5e+02 Kbytes/s)ftp> TYPE quit <CR>221 Goodbye.% uncompress ftpot.tar.Z



Page 2 June 12, 1996% tar xvf ftpot.tar� This will have generated a directory $HOME/tpot/ftpot as well as self-consistent contents and subdirectories. For more instructions refer to README�les in $HOME/tpot/ftpot and $HOME/tpot/ftpot/test. A postscript ver-sion of this �le, tpotfullFORTRAN.ps, can be also obtained from the samedirectory using anonymous ftp. Otherwise, there is a TeX �le tpotfullFOR-TRAN.tex or a dvi �le can be obtained, but the only way of getting a copyof the manual that includes �gures is to get tpotfullFORTRAN.ps and printit on a postscript printer. This includes encapsulated postscript producedusing \TEXSIS" starting from tpotfullFORTRAN.tex. If a version of TeXother than TEXSIS is used for converting �le.tex to �le.dvi it is necessaryto emulate this encapsulation some other way, or to remove the �gures.� Sample lattice description �les are in subdirectory $HOME/tpot/ftpot/test.� It is recommended that a directory structure like $HOME/tpot/ftpot/test'sbe established. Instructions for doing this, command �les for routing out-put �les into these directories are included, and instructions for using themare contained in the README �les mentioned above. A standard direc-tory organization is useful for writing, then later reading, an intermedi-ate, \at", machine description �le (fort.7) that encapsulates preliminarylattice tuning already performed and can be used for tracking or furthertuning.� Since accelerators are \aky", and since TEAPOT models acceleratorsfaithfully, it follows that TEAPOT may occasionally appear \aky" also.As with real accelerators, it is normal to have to iterate correction proce-dures. Lattice manipulations, especially tune changes, sometimes cause thelattice to go unstable. Usually, as with real storage rings, taking smallersteps overcomes the problem. Most other di�culties have to do with mis-interpretation of this (obscure) manual (outright errors in the manual have



June 12, 1996 Page 3not been unknown). R. Talman will be pleased to attempt to repair anysuch misinterpretations as well as any bugs that surface. Based on track-ing down hundreds of problems on tens of accelerators, the thin elementapproach is never the ultimate source of disagreement with either expecta-tion or other codes. In rings with only a few dipoles they should be brokenup so that no deection is greater than a few degrees, and \mini-beta"quadrupoles should be broken up, but otherwise compulsive splitting up ofelements is rarely justi�ed or necessary.GENERAL DESCRIPTION AND SURVEY OF CAPABILITIESTEAPOT is an accelerator modeling code that treats all elements (aside fromdrifts) as thin elements. This gives it the feature, unique among numerical codes,of being symplectic to all orders (not counting computer precision limitation.)The command language for TEAPOT is a dialect of that used by MAD. Thissection gives a brief overview of many of the capabilities. Detailed syntax andparameter de�nition is contained in later sections. All variables are measured inSI units (except energies are measured in GeV.)TEAPOT reads a lattice in Standard Input Format and converts all thickelements to thin ones. The user can acheve arbitrarily close agreement with thickelement representations by breaking elements into shorter lengths. Because thisprocess is most important for quadrupoles there is special provision for breakingthem up|if a quadrupole is of type IR or IRn (where n = 2, 4, 8 or 16), it issplit into four or 4n thin quadrupoles. This breaking up is handled internally ina way that is transparent to the user, including the assignment of errors. Thesublengths chosen are not quite uniform|rather they follow an algorithm forenhanced tracking accuracy. It is legitimate, and even sensible if computing timeis not an issue and comparison with other lattice codes is, to make all quadrupoleshave type IR or IRn. A Twiss analysis can be performed and the tunes can beadjusted using a thin lens matrix representation of the machine. Magnetic errorsand misalignments, either systematic or random, can be added to elements, after



Page 4 June 12, 1996which the closed orbit can be found and particles can be tracked exactly throughthe resulting lattice. By means of this tracking numerous accelerator operationscan be modeled.A preliminary Twiss analysis is available which assumes an ideal, uncoupled,lattice and works with 2�2 matrices. This is useful for comparison with other twodimensional codes. However most other operations of TEAPOT use a general 4�4 formalism which explicitly evaluates eigenmotions in the presence of arbitraryerrors. These analyses use tracked particle trajectories to compute the �rst andsecond order transfer matrices for the entire machine or through arbitrary sectorsof the lattice delimited by concatenation ags. Subsequent tracking is performedexactly or using these maps depending on the ag settings. A `BEAMTRAKbeam' of up to 1024 particles can be randomly generated and the particles trackedindividually with the beam centroid coordinates being recorded at beam positionmonitor locations. The machine can be decoupled using skew quadrupoles, thetunes can be adjusted, and the chromaticity can be �t in the presence of errors.Nonlinear �tting of the values of user-declared parameters can be performed tocause the large amplitude lattice transfer map agree as nearly as possible withthe small amplitude transfer map.Longitudinal path length and velocity deviations needed for synchrotron os-cillations are calculated. RF cavities are supported. It is assumed that output oflongitudinal displacements during tracking is desired if and only if there is an RFcavity in the lattice. Since the nominal revolution period is calculated internalto the program, the RF frequency is input as the harmonic number (an integer)multiple of the revolution frequency.The two main purposes of TEAPOT are the analysis of the expected per-formance of already designed lattices and the simulation of lattice tuning andcorrection operations. TEAPOT's design capability is restricted to making thebest use of the elements present and hence distinguishing among di�erent pos-sible designs. It is not intended to be used for basic linear lattice design and



June 12, 1996 Page 5matching operations such as are performed by MAD or SYNCH.TEAPOT is intended as the central computational part of an interactiveoperations simulation using a unix workstation but this manual is restricted tothe setting up and noninteractive use of the program. Graphics and interactivedescriptions are contained elsewhere. Most capabilities described here have beenported to the VAX and have been or can easily be ported to the CRAY or pre-sumably to any other mainframe computer. Also the code has compiled and runon most unix workstations; including SUN, HP, DEC, IBM and Silicon Graphics.The �rst portion of this document is a description of the elements, commandsand options recognized by TEAPOT. Appendices A through E describe the for-mat of output or input �les. Appendix F de�nes the various special type codesrecognized by TEAPOT and explains how they can be used to control calcula-tions. The material to this point is intended to give succinct instructions on howto set up an input �le. The remaining two appendices give an extremely verbosedescription of many of the formulas used in the program. They are intendedto augment the original publication in Particle Accelerators, 1987, which is alsoSSC-52.There are versions of the code in two computer languages, Fortran and C.Initially the code had been written in Fortran; the conversion to C was per-formed in 1988 by Vern Paxson. Subsequent coding was sometimes in C, sub-sequently ported to Fortran, and sometimes vice versa. The two versions arealmost completely interchangeable, both in input and output. At least they wereuntil roughly summer of 1990. Since then numerous changes, having to do withbeam steering, tracking of longitudinal displacements, allowance for RF cavities,support for dynamic modeling such as resonant extraction, and ability to modelaperture limits and maximum element strengths have been coded in the Fortranversion, and not yet ported to the C version. This version of the manual reectsthose changes, as well as some features supported by both versions, but not yetdescribed in the o�cial manual, which is supposed to be valid for both languages.



Page 6 June 12, 1996There is a small di�erence between the \thin element circumference" and the\thick element circumference"; it is due to the use of straight line segments. Itis explicitly indicated in the output printout, and can either be ignored, reducedby breaking elements into shorter lengths, or otherwise allowed for.E�ective October 1993, appreciable (but backward compatible) extensionswill have been incorporated going beyond the \standard lattice description lan-guage" of Snowmass 1984 which, justi�ed or not, we also call MAD 4.0. (Mis-cellaneous minor extensions had crept in previously.) New features include aper-ture limitations at (almost) all elements, and maximum bend strengths for mostactive elements. These changes are compatible with, and encouraged by, the si-multaneous inclusion of support for \sds", self-describing data �les. While thisdisciplined data format has not yet achieved su�cient acceptance to be adoptedas \standard", its use would relax the constraints that presently tend to freeze �leformats and impede the introduction of new features. The following two tableslist the elements recognized by TEAPOT: the �rst lists \standard" parameters,the second lists extensions. Though TEAPOT does not support bend elementsother than sector bends (SBEND's), it is straightforward to model rectangularbends (RBEND's) and bend elements with other pole angles. An \awk" script\mad2tpot", that performs this operation mechanically is available. It can alsobe tailored to perform other minor variations. There is also a \wrapper" scriptcalled \teacozy" that permits going beyond the standard to use element nameslonger than eight characters or containing special characters.



June 12, 1996 Page 7ELEMENTS THAT ARE RECOGNIZED BY TEAPOT(WITH \STANDARD" ALLOWED PARAMETERS)DRIFT L drift spaceSBEND L ANGLE K1 K2sector bending magnet(RBEND) L ANGLE K1 K2rectangular bending magnetQUADRUPOLE L K1 TILT quadrupoleSEXTUPOLE L K2 TILT sextupoleOCTUPOLE L K3 TILT octupoleMULTIPOLE KnL Tn (n=1,9) general thin multipoleSOLENOID L KS solenoidHKICK L KICK horizontal closed orbit correctorVKICK L KICK vertical closed orbit correctorHMON L horizontal monitorVMON L vertical monitorMON L monitor in both planesMARKER markerRFCAVITY L accelerating cavityECOLLIMA L X(Y)SIZE elliptic apertureRCOLLIMA L X(Y)SIZE rectangular apertureXSEPTUM horizontal septum
All elements also accept special TYPE declarations. See Appendix F. SinceECOLLIMA and RCOLLIMA elements are replaced internally by a thin mask ateach end, they should probably not be given a TYPE declaration. For examplemaking a collimator TYPE=X2 will give repeated output to fort.28.



Page 8 June 12, 1996E�ective January, 1994, RBEND elements are allowed, primarily to support themodeling of wigglers. They are risky in the sense that the code using them hasbeen less exercised and debugged than that supporting SBEND's.



June 12, 1996 Page 9ELEMENTS THAT ARE RECOGNIZED BY TEAPOT(WITH \EXTENDED" ALLOWED PARAMETERS)DRIFTSBEND ANGLEMAX TYPEAPER X(Y)APSIZE X(Y)OFFSETWIGGLER KZ KX AX B0TYPEAPER X(Y)APSIZE X(Y)OFFSETQUADRUPOLE K1MAX TYPEAPER X(Y)APSIZE X(Y)OFFSETSEXTUPOLE K2MAX TYPEAPER X(Y)APSIZE X(Y)OFFSETOCTUPOLE K3MAX TYPEAPER X(Y)APSIZE X(Y)OFFSETMULTIPOLESOLENOID KSMAXHKICK KICKMAX TYPEAPER X(Y)APSIZE X(Y)OFFSETVKICK KICKMAX TYPEAPER X(Y)APSIZE X(Y)OFFSETHMON TYPEAPER X(Y)APSIZE X(Y)OFFSETVMON TYPEAPER X(Y)APSIZE X(Y)OFFSETMON TYPEAPER X(Y)APSIZE X(Y)OFFSETMARKERRFCAVITY VOLT VOLTMAX LAG FREQ(=harm. num.)RAMPFREQ RELMORAT ENRGFRAC ENRGLOSSECOLLIMARCOLLIMAXSEPTUM XIN(�) XTHCKNSS(+) KICK KICKMAXSUP(�) SDWN(>SUP) LAMBRTSNTYPEAPER X(Y)APSIZE X(Y)OFFSETQUADEND INPLOUTM X(Y)POLANG INVFOCLN QUADLENGBEAMBEAM BMBMCHRG X(Y,Z)BMOFSET X(Y,Z)BMRMSSTOCHAST SIG(X,Y,CT) DMPDEC(X,Y,CT)



Page 10 June 12, 1996Elements ending with \MAX" are all called \MXSTRENG" internally.



June 12, 1996 Page 11SPECIAL TEAPOT ELEMENTSExcept TEAPOT specials, elements and parameters are described in detailin the MAD manual (version 4).Stochastic emittance alteration can be modeled with the STOCHAST com-mand. This command was designed primarily with electrons in mind (but, withreinterpretation, the input parameters can be altered to allowmodeling stochasticemittance growth in proton accelerators.) In electron accelerators, equilibriumbetween stochastic growth (due to quantum uctuations) and damping (due tomaking up the lost energy in the rf cavities) is established within milliseconds.The inputs SIGX, SIGY, and SIGCT are the desired equilibrium rms valuesof bunch width, height, and length. The inputs DMPDECX, DMPDECY, andDMPDECCT are the fractional reduction per turn in phase space radius (withmomentum axis normalized for circular phase space orbits). The actual stochasticexitation applied each turn can be inferred from SUBROUTINE stochini, whichhas detailed comments. Since noise and damping are applied only to the coordi-nates x, y, and ct (and not to the momenta px, py, pz) the damping decrement andnoise strength are accordingly modi�ed internally. The x damping is reckoned asfraction DMPDECX of the deviation from the o�-momentum horizontal closedorbit appropriate to each particle. Vertical, y, damping has a similar referenceorbit subtraction, but there is no longitudinal, ct, reference orbit subtraction.Since the equilibration time will be many thousands of turns there is a largeadvantage in establishing starting distributions that are close to equilibrium. Thiscan be done using the GAUSSIAN beam feature of TRACK or TRACKCLO.Hardware maxima of elements physical elements that have a single naturalstrength parameter are assigned by ANGLEMAX, K1MAX, K2MAX, K3MAX,KSMAX, VOLTMAX, or KICKMAX. MXSTRENG is synonomous with each ofthese, depending on the context. By default all these hardware limits are takento be in�nite. At this time the only TEAPOT operations that respond usefullyto �nite values for these limits are HSTEER and VSTEER, which will refuse to



Page 12 June 12, 1996exceed the KICKMAX values of the HKICK or VKICK elements they use. (Thislast sentence was added to this manual at an instant in time at which the codeto support bend maxima had been written and was \certain" to be installed \inthe next couple of days". Unfortunately this has not yet happened.)Most elements accept aperture de�nitions. During particle tracking particlesoutside the aperture are lost. The aperture check is made at the end of everydrift, which is to say at the beginning of every active element. If an aperturecheck is required in the interior, the element has to be split at that point. Thishas the e�ect of inserting a (zero length) drift. Apertures can be elliptical, TY-PEAPER=1, rectangular, TYPEAPER=2, or diamond, TYPEAPER=3. Thedefault when no aperture parameters are given is a circle of radius one meter. Itis not directly legitimate to use, say, TYPEAPER=ELLIPSE, but the same canbe accomplished by �rst de�ning ELLIPSE=1 in the lattice �le.Aperture shapes and dimensions are illustrated in the �gure. XAPSIZE andYAPSIZE are half-aperture dimensions. If only one is given the other one defaultsto the same value. Cartesian coordinates of the aperture center are given by(XOFFSET,YOFFSET)|default is (0,0).Aperture limits are not supported for some elements. For backward compati-bility this includes collimator types ECOLLIMA and RCOLLIMA, which becomeless exible than ordinary elements for de�ning apertures as a consequence. Alsoexcluded are elements DRIFT, MARKER, and MULTIPOLE; also SOLENOID,RFCAVITY and XSEPTUM. (Technical aside: the latter three are segregatedbecause they exercise \squatter's rights" in high order multipole storage locationsof fort.7, the at machine description �le. This accomplishes nothing, but maysimplify slightly the task of supporting variable maximum multipole index some-time in the future. The amount of extra storage space required to record apertureparameters and magnet strenth limits for every element is far from trivial. It isanticipated that some users will be forced to expand their computer memory al-location on this account. In principle this extra memory could be captured from
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Figure 1: Aperture de�nition parameters.the (rarely used) memory allotted to high order multipole coe�cients.)For modeling slow particle extraction the XSEPTUM element can be used.Presence of any XSEPTUM element forces EXTRACT to be true. With EX-TRACT true, a BEAMTRAK mode is enabled that allows tune adjustment ele-ments (or any other elements) to be adjusted in increments, periodically duringparticle tracking. Initially the TRACK command works as usual until every par-ticles has been tracked for the requested number of turns. After that, and after



Page 14 June 12, 1996an ERRORS (or MODIFY) command has entered the desired element changes, acommand CONTINUE, turns=<integer> causes tracking of the same set of par-ticles to continue for the newly requested number of turns. This can be repeatedas often as desired. EXTRACT also has the e�ect of suppressing subtractionof the closed orbit from coordinates printed out and also of suppressing certainbeam moment calculations and their printout. When �nished tracking a set ofparticles, if further operations are to be performed, it is �rst necessary to issuea DUMPBEAM command. This BEAMTRAK condition only occurs (at timeof writing) because BEAMTRAK or GAUSSIAN tracking has been explicitlyrequested, or because an XSEPTUM element is present anywhere in the lattice.The XSEPTUM element: administers horizontal deection KICK to anyparticle outside its outer surface; has no e�ect on a particle inside its innersurface; and completely absorbs any particle hitting the septum electrode. Toallow for septum thickness and particle slope the (necessarily positive) thicknessXTHCKNSS and the longitudinal coordinates of the septum ends relative to itsnominal position in the lattice, SUP and SDWN (>SUP), must be given. Butthe XSEPTUM element is otherwise equivalent to a marker|it must not be al-loted any arc length in the lattice, even if SUP and SDWN have non-zero values.E�ectively, this permits the element to intrude on its neighbors allotted space.As a result, the only inuence of the values of SUP and SDWN is in the deter-mination of whether a particle passes inside, passes outside, or hits the septum.Otherwise they have no e�ect.Letting xout be the x coordinate of the outer surface of the septum electrode,its outer surface coordinate isxout = XIN(1 + XTHCKNSS=jXIN j):When a particle passes the element the code determines which side of its trajec-tory each of the four corners of the septum electrode inhabits and determines itsfate accordingly: if all four corners are outside the trajectory, the septum has



June 12, 1996 Page 15no e�ect; if all are inside the particle is kicked; otherwise the particle is \ab-sorbed". If the XSEPTUM attribute list includes LAMBRTSN=1, the particleis also absorbed in the case where it would otherwise be kicked.Standard practice is to make the assignment, TYPE=X1, for the regularseptum. This causes printout (fort.18) of every particle on every turn atthe septum. Similarly, making the assignment, TYPE=X2, for the Lambert-son causes turn-by-turn printout there (fort.28). Similary output at any twoother locations can be obtained by placing an element of TYPE=X3 (fort.38),or TYPE=X4 (fort.48). TRACK, not TRACKCLO, is probably appropriate,since the septum location is presumably �xed in absolute coordinates, whileTRACKCLO calculates displacements from the closed orbit.For collimators, XSIZE and YSIZE denote the half-axes or half-widths. Anon-zero length collimator is split into two elements with a drift region betweenthem. In tracking the aperture is checked both at the beginning and end ofthis region. A conical shaped collimator can be modeled by two zero lengthcollimators separated by a drift.Treatment of solenoids is discussed in Appendix G. The solenoid strengthparameter has the MAD de�nition, KS = cB0=(pc=e). The strength parameterused in TRANSPORT and in Appendix G is K = cB0=(2pc=e) = (KS)/2. Thebend angle of a particle with transverse momentum p? in a solenoid of length Lis 2� = 2KL = (KS)L.For RFCAVITY the entries used by TEAPOT di�er from MAD. Treatmentof longitudinal quantities is described in the report teapot longit.ps. FREQ isthe harmonic number (which can also be thought of as the frequency in unitsof the revolution frequency.) This permits TEAPOT to use its own calculatedvalue for the revolution frequency. For the normal choice of units, the units ofVOLT are GV, gigavolts.For storage ring operation leave RELMORAT unde�ned or set it to 0.0, inwhich case RAMPFREQ is ignored. ENRGLOSS is the energy loss per turn



Page 16 June 12, 1996(presumeably from synchrotron radiation) to be made up by the cavity; normalunits are GeV. For more than one cavity the values of ENRGLOSS must sumto the correct theoretical value. In tracking individual particles the energy loss(equal to ENRGLOSS) is taken all at once at the cavity, not uniformly aroundthe ring. As a result the program cannot be used, without special coding, tostudy spiralling in between cavities, or to obtain damping partition numbers.(It would be inconsistent to do that in any case without introducing stochasticanti-damping.) Adiabatic damping that accompanies energy ramping is correctlydescribed. With ENRGLOSS non-zero in a cavity, the RF phase of that cavityis adjusted to make up that energy in that cavity. Hence e�ects of nonlinear rfshape, such as particle loss if there is insu�cient RF voltage, should be modeledcorrectly. Each cavity phase can be shifted by LAG, but if the ENRGLOSS valueis non-zero it must be done with care as it is likely to upset the global energyrecovery; see below for more about LAG.For simulation of acceleration, RAMPFREQ is the frequency in Hertz of theaccelerator magnetic �eld variation, assumed to be a biased sinuisoid, with thestarting momentum(times c) being p00c and the magnetic �eld varying asRELMORAT = relative momentum ratio = [(B(max)-B(min))/B(min)].p0c = p00c*(1.0 + 0.5*RELMORAT*(1 - cos(2*pi*telapsed*RAMPFREQ))).The rf phase is calculated internally to correspond to the phase needed by the ref-erence particle (the RF voltage VOLT being assumed to be constant) to match thegiven reference-momentum dependence. The progam chooses the phase that willcause stable oscillation. (This includes switching the phase on passage throughtransition.) If there is more than one RF cavity they should be given di�erentnames, so their parameters can be assigned independently. If ENRGFRAC isde�ned (not 0.0) then the cavity phase is adjusted so the cavity makes up EN-RGFRAC*(energy gain per turn). If ENRGFRAC is de�ned for one cavity itshould be de�ned for all, and the values must add to 1. If both energy loss andenergy ramping are in e�ect it is just asking for trouble to not make ENRGFRAC



June 12, 1996 Page 17proportional to ENRGLOSS. If ENRGFRAC is not de�ned then the cavity makesup energy proportional to the arc length since the most recent previous cavity.For uniform azimuthal spacing that is what would normally be desired. This canbe altered using the variable LAG which shifts the RF phase of the individualcavity, relative to what the program would set. This needs to be tailored tothe actual geometry. As an example, consider two cavities side-by-side, with noother cavities in the machine. With LAG=0 for both cavities, and ENRGFRACnot de�ned, the �rst cavity will automatically be phased to make up the entireenergy gain required for the ramp. Assuming one really wants equal energy gainfrom the two cavities one could, in this case, setLAG=�1=2arcsin�E=V OLTwhere �E is the energy gain per full turn. This is not really recommended asit would not allow for variable energy gain per turn and frequency modulation.For further tailoring of the RF, or for changing the energy ramp, it is neces-sary to change the source code (within the do 190 loop of subroutine traconc)appropriately, and to check by stepping through that section.In order to be restorable in the write�le-read�le sequence, all RF parame-ters are assigned names in the \at" machine description arrays \atw(m, ielem)"and \btw(m, ielem)", which can be written to the \fort.7" external �le. Theparameters �t in slots that contain multipole elements for magnetic elements.(This special use of the structure renders it non-at, but never mind.) If theelement number of the rf cavity is \i", the slots used are btw(7,i)=relmorat,atw(7,i)=rampfreq, btw(8,i)=vrf, atw(8,i)=phirf, btw(9,i)=freqhnum, atw(6,i)=enrgfrac,atw(9,i)=enrgloss. Naturally the code must take care not to interpret these en-tries as magnetic multipole elements. The parameters of XSEPTUM, QUADEND,and BEAMBEAM elements are also \packed" into high atw() and btw() slots.The rationale for \breaking" the at structure is that only a few of these elementsare typically present.No vertical bends are allowed for calculation of the Reference Orbit (the



Page 18 June 12, 1996MAKETHIN command), however vertical bends may be introduced as errors,misalignments, or in orbit correction|this is done with ERRORS or MODIFY.(Note added 17 March 1992 : A version of the code called ftpotv supports verticalbends. That code has had little testing and fails to support certain featuresspelled out in this manual.) All elements are converted to single thin elementsexcept quadrupoles or dipoles of TYPE = `IR',`IR2',`IR4',`IR8', `IR16', which aresplit into four, eight, sixteen, thirty-two, sixty-four thin quadrupoles, respectively.Disagreement with other modeling programs on the precise tune values, or onwhether a lattice is even stable, can often be recti�ed by splitting up some orall quadrupoles or dipoles in this way. Splitting dipole elements is useful mainlyfor combined function lattices or for small ring for which the dipoles provideappreciable focusing. Quadrupoles in regions of rapid �-function variation (oftennear low � intersection regions, which is the source of the \ir" notation) oftenrequire subdivision also.The e�ects of nonzero entry angle into bend elements should be modeledwith multipole elements. This includes RBEND's (i.e. rectangular bends) inthe standard input format. One exception to this is permitted for zero lengthbends which are useful for comparison with simple analytic formulas. Rectangularbends of zero length are modeled by SBEND elements of very short, but not zero,length, of TYPE = `NOFO'. See Appendix F. An awk script mad2tpot.awk existsthat can be used to mechanically insert end e�ect multipoles into the input data�le, or which can be used as an example to perform to do it yourself \by hand".E�ective January 1994, RBEND's are allowed, especially for modeling wig-glers. This incorporates the vertical focusing and absence of horizontal focusingthat accompany RBEND's. Modeling of wigglers is discussed further in AppendixI. A QUADEND element placed at the end of a quadrupole will account forthe inevitable solenoidal �eld (causing a deection of cubic order, like an oc-tupole) as well as a sextupole, if the entrance or exit angle deviates from nor-



June 12, 1996 Page 19mal. A QUADEND element must be introduced explicitly at each end, with\INPLOUTM=+1" indicating entrance and \INPLOUTM=-1" indicating exit.The horizontal pole-angle is entered as XPOLANG, with the sign depending onwhether it is entrance or exit. In both cases a positive sign indicates that aparticle with x > 0 \sees" a longer quadrupole because of the pole angle. Simi-larly, the sign of the vertical pole angle YPOLANG is positive if a particle withy > 0 \sees" a longer quad. The quad length is QUADLENG and its inversefocal length is INVFOCLN, both in meters. (Actually, since only the ratio en-ters, except for needing to be the same, the units do not matter. The focusingstrength per unit length K1=INVFOCLN/QUADLENG of the quadrupole, forwhich this element forms the end, must be the same as for the QUADRUPOLEitself.) If a non-zero value of QUADLENG is not given the program will issue anerror message.Passage through an oncoming beam is represented by a BEAMBEAM ele-ment. This is necessarily a \weak-strong" representation with the single particlebeing tracked seeing the constant �elds of the other beam like those of any other�xed beam-line element. Since passage through the bunch is treated as occurringimpulsively at a single thin longitudinal element, it is only the longitudinallyintegrated transverse kick that matters. Hence, though rms bunch length ZBM-RMS is accepted for possible future use, it is not used at present. The transversepro�les are entered by XBMRMS aqnd YBMRMS. It is the responsibility ofthe user to calculate these for example by knowing the �-functions and the emit-tances. All pro�les are assumed to be Gaussian ellipsoidal. The total total bunchcharge is BMBMCHRG which is equal in magnitude to the number of particlesin the bunch. The sign of BMBMCHRG determines whether the linear beam-beam e�ect is focusing or defocusing. To allow correctly for particle sti�ness,which is calculated internally, the momentum (or energy) must have been cor-rectly entered by an ANALYSIS command. It is important to remember thatthe units of energy are GeV (the only non-MKS unit in TEAPOT) and thatthe particle type (electron or proton) must be correctly speci�ed in all analysis



Page 20 June 12, 1996and tracking commands. The reason this is emphasized here is that, unlike mostlattice elements for which the particle sti�ness is \scaled out", (for example aquadrupole is characterized by its focal length), that is not true of BEAMBEAM.Horizontal, vertical, and longitudinal o�sets from the ideal orbit are entered byX(Y,Z)BMOFSET. This can be used, for example, to represent parasitic beam-beam crossings. Presence of a BEAMBEAM element will be reected in smallamplitude tune shifts (of QAA and QDD) calculated by ANALYSIS but not (ofQX and QY) calculated by TWISS. If these agree in the absence of BEAMBEAMelement (as they should at least for ideal lattices) the di�erence can be used asa check of code behavior. More recommended for the same purpose is to FFTmultiturn tracking data. The code currently assumes that both beams are highlyrelativistic, but a comment in SUBROUTINE trkbmbm indicates how that can berecti�ed if necessary.There is a version of the code called TEASPOON which tracks particle spins.It is due to Sateesh Mane and is available via anonymous ftp.E�ective 16 August, 1994, type WIGGLER is supported. See the reportteapot wiggler.ps, written by Weiru Wang and R. Talman for details. One wig-gler section consists of a half-pole, full-pole, half-pole sequence. In the code such asection is modeled by a R-matrix and T-matrix only (making it non-symplectic.)A full wiggler is made up of, say, 12 such sections. The inputs are: B0, the max-imum magnetic �eld; KZ, the longitudinal wave number with the z-dependencetaken as sinuisoidal; KX, the horizontal, possibly imaginary \wave number"; thecorresponding quantity KY is calculated internally using KZ2 = KX2 +KY 2;AX is the maximum transverse orbit displacement of the actual orbit, measuredfrom a straight line coinciding with the orbit before the input and after the out-put. It satis�es AX = 2 � c �B0=(pc=e)=KZ2 but it must be included as input;p is obtained internally by inverting this equation.



June 12, 1996 Page 21ANALYSISANALYSIS, fENERGY, PCg=<value>, [PARTICLE = fPROTON,ELECTRONg,] XTYP = <value>, PXTYP = <value>, YTYP= <value>, PYTYP = <value>, DPTYP = <value>, DELTA =<value>, [TAPE, [UNIT = <value>],], [PRINT]The ANALYSIS command �nds the closed orbit and performs a full Twissanalysis of the machine by tracking particles with the given (\typical") initialamplitudes. ENERGY is given in GeV and DELTA allows an analysis to beperformed at any momentum o�set DELTA. DPTYP is then the change in mo-mentum used to calculate � and the chromaticity. PARTICLE is optional, thedefault is PROTON. The UNIT number for the output �le can be selected, andseveral analyses can be run on a machine (for example, before and after �tting).The default UNIT is 4 (see Appendix D). Note that if one wants to use tpotplot package ( XPOT ) \TAPE" is essential in the ANALYSIS command. Thedesignation \TAPE", handed down via the code MAD, is somewhat archaic andmisleading; as well as not in fact resulting in any magnetic tape being written,it causes certain reference quantities to be updated. Though the usage is not yetconsistent, invoking TAPE sometimes has the e�ect of updating what constitutesthe \central" machine parameters. Tape output is obtained for every ANALY-SIS command and the last one is retained. Inclusion of the PRINT directivecauses a table of Twiss parameters to be written to standard output along witha reasonably abbreviated progress-describing commentary.BPMERROR, KDERR is similar These are commands like the ERRORScommand but specialized to SSC requirements. They can be regarded as tem-plates from which special error requirements can be patterned,BPMERRORS, f<element1>,<element2>,...,<element16>g , SIGXWRTQ=<value>, SIGYWRTQ=<value>, SIGXSOLO=<value>g, SIGYSOLO= <value>, SIGXWRTS = <value>, SIGYWRTS = <value>, [CUT= <value>, f SEED = <value>, SYSTEMATIC = <value>g]



Page 22 June 12, 1996where SIGXSOLO and SIGYSOLO request displacement of the BPM with re-spect to the reference orbit, SIGXWRTQ and SIGYWRTQ request displacementof the BPM with respect to the closest quadrupole, SIGXWRTS and SIGYWRTSrequest displacement of the BPM with respect to the closest sextupole.CHFITOLD, see DECOUPLECHROMFIT, see DECOUPLECLOSEDORBITCLOSEDORBIT, X = <value>, PX = <value>, Y = <value>, PY= <value>This command sets the closed orbit to the given values. This is useful ifthe machine has strong non-linearities and the program has di�culty �nding theclosed orbit. In that case, this command would be followed by an ANALYSIScommand, and the values input would serve as a starting point for the closedorbit search.CPLTRKCPLTRK, KICKX = <value>, KICKY = <value>, THRESHOLD= <value>This command computes interpolated coordinates at BPM's which measurebeam position in only one plane for use in decoupling. To accomplish this twoparticles are tracked, one with initial kick px=kickx and one with py=kicky (inmrad) at the origin. At each detector of type chcd or cvcd, the coordinates of thetracked particles and the ideal twiss parameters are recorded. At each detector,the missing coordinate (in the plane of the tracked particle for greatest accuracy)is obtained by interpolation, using the ideal twiss parameters and the coordinatesof the tracked particle at the adjacent detectors on either side. Output �lesof the ideal-interpolated and error-present actual coordinates at each chcd andcvcd are written (see the description of the fort.50, fort.51, fort.60 and fort.61 inthe Appendix). These can be used to study the accuracy of the interpolation indetail. The rms of the di�erence between the interpolated and actual coordinates



June 12, 1996 Page 23is computed as a �gure-of-merit for the interpolation in each plane. A warningmessage is printed whenever the fractional deviation of the interpolated from theactual coordinate is greater than the user-speci�ed threshold at a detector.DECOUPLE (DECOUPLO is di�erent), TUNETHIN, CHROMFIT,CHFITOLD, TUNTHOLDAll these commands must be preceded by an ANALYSIS command. The<parameter name>s cannot be global parameters, and must be speci�ed by themultipole coe�cient, for example, qf[b1] (NOT k1). The output results of the�ts are values for the multipole coe�cients; they are related to the kn used byMAD by ~bn = knL=n!where ~bn = bn(LB0=\B�"). All elements of the \family" given in the commandare assumed to have the same value and are set to have the same value by the�tting routines. For DECOUPLE there are three variants:DECOUPLE, A11 =<parameter name>, A12 =<parameter name>,A13 = <parameter name>, A14 = <parameter name>DECOUPLE, A11 =<parameter name>, A12 =<parameter name>,A13 = <parameter name>, A14 = <parameter name> , A11M =<parameter name>, A12M = <parameter name>, A13M = <pa-rameter name>, A14M = <parameter name>DECOUPLE, A11 =<parameter name>, A12 =<parameter name>,B1F = <parameter name>, B2F = <parameter name> , TUNEX =<value>, TUNEY = <value>The �rst variant zeroes the four matrix elements Ryx, Ryx0, Ry0x, and Ry0x0using the speci�ed skew quadrupoles. The second variant sets antisymmetricskew quad pairs ( in lattices having mirror symmetry.) For this it is necesaryto include the parameters A11M, A12M, A13M and A14M. The element con-taining A11M must be mirror symmetric with the element containing A11 and



Page 24 June 12, 1996the �t will insure A11M = -A11 and so on. The third variant (courtesy of DanTrbojevic and Steve Tepikian) zeros two elements, E12 and E22, of the matrixE = B + C, (see Appendix G), as well as adjusting the tunes to the valuesrequested for TUNEX and TUNEY. This adjustment sets determinant jEj tozero, which is a necessary condition for making the tunes coincide. An exam-ple skew quadrupole declaration is \a11=sk2[a1]". An example erect quadrupoledeclaration is \b1f=quadhf[b1]".TUNETHIN, MUX = <value>, MUY = <value>, B1F = <param-eter name>, B1D = <parameter name>, [NUMTRIES = <value>,TOLERANCE = <value>, STEPSIZE = <value>]The TUNETHIN command �ts the tunes of the thin lens machine using thespeci�ed quadrupoles. NUMTRIES is the maximum number of iterations for the�tting, TOLERANCE is the maximum absolute value of the di�erence betweenthe requested values and the �tted values at convergence, and STEPSIZE is thesize of the �rst step in the �t. The defaults are 100 for NUMTRIES and 10�6for TOLERANCE.E�ective 2 March 1994, both TUNETHIN and CHROMFIT were changed inways that were almost, but not exactly, backward compatible. To obtain precisebackward compatibility one must use TUNTHOLD or CHFITOLD, with exactlythe syntax just described. One can also use the new versions of TUNETHINor CHROMFIT with the same syntax and obtain essentially identical results.The only reason for di�erence is that the algorithm alters correction elementsmultiplicatively (old ! new=old*(1+�)) rather than additively (old ! new= old+�0). In cases where \old" was zero this will not work and it will benecessary either to use TUNTHOLD or CHFITOLD or to assign non-zero (butotherwise non-critical) starting values. The reason for this change was to supportthe ganging of non-identical elements into a family sharing the same power bus.In that case the thin lens length-strength products will be proportional to theelement length for each element. The reason this is almost backward compatible



June 12, 1996 Page 25is that previously it was assumed that all members of each family were identical,and hence had identical strengths.To make this feature more easily applicable, a new syntax for TUNETHIN isallowed. Each element of the family (i.e. on the same bus) is declared to be \type= xtun" or \type = ytun" as appropriate. (It is assumed there are precisely twofamilies.) Then in the TUNETHIN line one includes the entries \famf = xtun[b1]", \famd = ytun[b1]," (note that there are no variables here, it must be exactlyas shown) rather than giving element names to specify the elements to be tuned.(If you think this syntax is obscure you should look at the code supporting it.)Example input �le lines fom the �le \$HOME/tpot/ftpot/test/dat/fam tune"follow:quadhf : quadrupo, l = lq , k1 = kq1, type = xtunquadvf : quadrupo, l = lq , k1 = kq2, type = ytunsext1 : sext, l = ls, k2 = ks1, type = xchrsext2 : sext, l = ls, k2 = ks2, type = ychrtunethin, mux = 2.38, muy = 2.42, famf=xtun[b1] , famd=ytun[b1]chromfit, famf=xchr[b2], famd=ychr[b2], chromx = 0.0, chromy = 0.0Note from this example that CHROMFIT supports the corresponding syntax,but with \xchr" and \ychr". The keywords \famf" and \famd" are mnemonic for\horizontal family" and \vertical family". The keywords \xtun", \ytun", \xchr",and \ychr", cannot be altered (except by simple hacking of the code.)CHROMFIT, CHROMX = <value>, CHROMY = <value>, B2F=<parameter name>, B2D = <parameter name>, [NUMTRIES =<value>, TOLERANCE = <value>, STEPSIZE = <value>]CHROMFIT �ts the chromaticity of the thin lens machine with the speci�edsextupoles. NUMTRIES is the maximum number of iterations for the �tting,TOLERANCE is the maximum absolute value of the di�erence between the re-quested values and the �tted values at convergence, and STEPSIZE is the sizeof the �rst step in the �t. The defaults are 10 for NUMTRIES and 10�4 forTOLERANCE.



Page 26 June 12, 1996DECOUPLODECOUPLO, [NUMTRIES = <value>, BADNESS = <value>]DECOUPLO is similar to HSTEER and VSTEER|read the HSTEER en-try for a more complete description. The prescription used by DECOUPLO todecouple the lattice (i.e. make the approximately-horizontal eigenplane be asnearly horizontal as possible in a least-squares sense) is described in Section 7of Appendix G. At least one skew adjusting element (i.e. a multipole with a t1entry and with k1l set to a de�nite value, normally zero) with TYPE=`cpla' andat least as many TYPE=`cpld' detector elements must be present. DECOUPLOincludes the capability of iterating until a goal badness (BADNESS) is reached,or of iterating a speci�ed number of times (NUMTRIES). If NUMTRIES andBADNESS are not explicity set, NUMTRIES is set to 1, whereas if BADNESSis speci�ed but NUMTRIES is not, NUMTRIES defaults to 10.DUMPBEAM, see also TRACKBy default (e�ective 10 July 1993) particles that have been tracked by TRACK(CLO)are retained for possible subsequent tracking. This makes it possible to adjust lat-tice parameters and continue tracking the same particles, for example to simulateresonant extraction. In the event that any other instruction is to be processedafter the RUN instruction has completed, it is necessary to follow the RUN linewith a line containing only DUMPBEAM if the BEAMTRAK ag has been set(either by the presence of an XSEPTUM element or by GAUSSIAN tracking.)This retains the code's backward compatiblity, for lattices without septum, inthat control continues to be returned automatically to subroutine cntrol whenthe requested number of particles and turns has been completed. Subroutinecntrol) �elds all subsequent teapot instructions (such as STOP, TRACK, ER-RORS, etc.) (A DUMPBEAM line present when it is not necessary will causethe command parser to issue an unexplained warning message `*** error *** ","expected, enter scanning mode' but will not otherwise cause malfunction.) (i.e.make the approximately-horizontal eigenplane be as nearly horizontal as possible



June 12, 1996 Page 27in a least-squares sense. ERRORS, see also MODIFY and PARMFITERRORS, f<element1>, <element2>,..., <element16>g , fSIGfA,Bgf0-9g = <value>, SIGX = <value>, SIGY = <value>, SIGTH-ETA = <value>g, [BZEROL = <value>, CUT = <value>, FILE= <value>, f SEED = <value>, SYSTEMATIC = <value>g, OR-BCHEAT = 0,1]This command sets multipole and position errors for all named elements. TheSIGB1, SIGA1, etc., are the sigmas for the errors of the multipole componentsbn, an speci�ed byBy + iBx = B0 nmaxXn=0(bn + i an)[(x��x) + i(y ��y)]n:For error-free dipoles b0 = 1, a0 = 0. As an example, suppose the (fully rela-tivistic) nominal accelerator energy is pc=e = E(TeV) = 20 . Conventionally aquantity \B�" is de�ned by\B�" = pc=ec ' 2� 1013Volts3� 108m=sec = 0:667� 105 Tesla-m;When the ERRORS command is applied to a dipole element of length L, a factorBZEROL(dipole)= B0L=\B�", which is the bend angle in radians in the smallangle limit, is calculated internally|it should not be speci�ed in the ERRORScommand. The magnetic �eld then is used internally in the formLBy + iLBx\B�" = BZEROL[1 + nmaxXn=1(bn + i an)((x��x) + i(y ��y))n]From this form it can be seen that the bn and an are �eld errors expressed asfractions of the nominal dipole �eld. The actual numerical values stored internalto TEAPOT areeb0 = BZEROL; fan = BZEROL � an; ebn = BZEROL � bn:These quantities can be output in ascii form to �le \fort.77" by issuing a \write-�le, slow" command. They can be read back (modi�ed if desired) from the same



Page 28 June 12, 1996�le, renamed \fort.7" by issuing a \read�le, slow" command. (If editing accessto these quantities is not required, the \fast" option is faster and more accurate.)Provisions that allow the code to determine values for the an and bn internallyeither as systematic or as random variables are explained below.For elements other than dipoles the �eld is expressed as a similar series,but the b0 element vanishes and a di�erent scale factor needs to be supplied,either internally or externally. For historical, and not easily defensible reasons,this is done by changing the meaning of the dimensionless parameter BZEROL,depending on the element type. Because of the variety of conventional units andde�nitions, and the variety of element types, it is di�cult to spell out in clearand simple terms how this common factor is to be interpreted, calculated, andsupplied in all cases. There is a script described below that can help to assurethat correct values are being used. Here we provide an illustrative calculation forthe next most important case after dipoles, namely quadrupoles.Suppose the following: the nominal, maximum accelerator energy is pmc=e =Em(TeV) = 20; (being in the fully relativistic limit) all magnetic �elds are pro-portional to E; and the maximum nominal quadrupole gradient of the mainquadrupoles is gm(Tesla=m) = 215. In one conventional description, the mag-netic �eld variation in the horizontal plane (y = 0), of an imperfect quadrupole,is written By(E;x) = E20 g [x+ 10�4 nmaxXn=2(bQn + iaQn )(x+ 0 i)nRn�1r ];where Rr is a reference radius, say 1 cm. The value of Rr and the factor 10�4are normally chosen such that the numerical values of aQn and bQn are of order 1for \bad", low order, multipoles and much less than 1 for high order multipoles.The strength coe�cient of the quadrupole (de�ned the same way in MAD andTEAPOT) is k = dBm=dx\B�"m = dB=dx\B�" = g\B�" = 2150:667� 105 m�2;



June 12, 1996 Page 29independent of beam energy. Dividing the multipole series by \B�" (in orderto cancel dependence on E), multiplying by quadrupole length L, and separatinginto an ideal term and an error term yieldsBy(E;x)L\B�" ����E=20 = gL\B�"x+ gL\B�"10�4 nmaxXn=2(bQn + iaQn ) xnRn�1r=BZEROL � x+ BZEROL � nmaxXn=2(bQn + iaQn )xnThe factors k and L, required to calculate the ideal term, are supplied with theQUADRUPOLE declaration statement, and using these,BZEROL(quadrupole) = gL\B�"is calculated internally. This same value is used as the common factor for theerror series. Matching coe�cients we havean = 10�4 aQnRn�1r ; bn = 10�4 bQnRn�1r :Coe�cients of di�erent orders have di�erent dimensionality. Without exception,TEAPOT always uses meters as the length dimension. Since 1 cm is a typicalvalue of Rr, the an and bn tend to increase by a factor of order 100 when theorder is increased by one. As explained above for dipoles, these quantities aremultiplied by BZEROL and stored as fan and ebn.For elements of type MULTIPOLE, the same error series is used, but the\ideal" part of the multipole series vanishes and the value of BZEROL has to besupplied in the form BZEROL=value in the ERRORS command.SIGX and SIGY are the sigmas for x and y displacements, and SIGTHETA isthe sigma for an angular rotation about the s axis. CUT is the cuto� in sigma forthe generation of random errors. The default CUT is 3 sigma. SEED is the seed



Page 30 June 12, 1996for the random number generator, one per run. If no seed is speci�ed, the programsupplies one. TEAPOT accepts only the �rst seed input; subsequent seed entriesin the same run are ignored. SYSTEMATIC is a request for systematic errors,and the value is the factor the sigmas are multiplied by to get the systematicerrors. When used in this way, inputs beginning with SIG, such as fSIGfA,Bgf0-9g, stand for systematic error values, not sigmas. Refer to the actual codeof subroutine \errors" for more information.The ERRORS command must be preceded by a MAKETHIN command. Ithas been found preferable to place ERRORS commands for quadrupoles con-taining SIGTHETA as late as possible because the presence of coupling seriouslydegrades the performance of the closed orbit �nding algorithm.The error distribution can be read from a �le, using FILE=value, wherevalue is the unit number read. In this �le the �rst two lines are primarily for theuser's convenience; TEAPOT keeps track of them but they do not inuence therun. The �rst is a user-provided seed, presumably keyed to the subsequent en-tries if they were Monte Carlo produced. The second is an eight character stringsaved as a label. Subsequent lines are matched sequentially with occurrences ofthe named element in the lattice and the entries (one per line) after multipli-cation by a systematic factor, are applied to the corresponding element. Themultipole element a�ected and a common multiplicative factor are indicated bythe particular choices in ffSIGfA, Bgf0-9g, SIGX, SIGY, SIGTHETAg=value.This value multiplies the quantities read from the �le and, by the BZEROLvalue (supplied either internally or externally) and the results are applied se-quentially to the named elements. The number of entries in the �le must matchthe number of occurrences of the named element. Other error distributions in thesame format can be concatenated to the same �le and read by subsequent errorcommands. The SYSTEMATIC directive should not be used in conjunction withFILE.An ERRORS command can include \ORBCHEAT=1" or \ORBCHEAT=0"



June 12, 1996 Page 31where \0/1" stand for \false/true" and no other values are allowed. The ER-RORS command must be preceeded by an ANALYSIS with TAPE turned on.The ORBCHEAT directive only makes sense if there are reasonable complementsof horizontal (type=KHKA) and vertical (type=KVKA) elements. When OR-BCHEAT is true, the closest preceding and closest following steering elementsare automatically adjusted to compensate for any steering that occurs when er-rors are added to elements being modi�ed by the particular ERRORS command.The compensation is such that the previous corrector, present element, and fol-lowing corrector form a closed three-bump. Compared to most other featuresin TEAPOT this is \cheating" because it uses information that the computer\knows" but which would not not be known operationally. As well as checkingself-consistency, there are two intended uses for ORBCHEAT. One is to checkthat the particular distribution of steering elements is capable, given perfect in-formation, of achieving a satisfactory closed orbit in the presence of the particularerrors being added. The other is to expedite investigations of other multipole ef-fects when one does not wish to take time to �x the orbit operationally. The stateof ORBCHEAT in one ERRORS command has no e�ect on any other ERRORScommand. ORBCHEAT cannot be used with KDERRS or any of the sectorsteering algorithms HSTEER1, HSTEER2, etc. Switching to \ORBCHEAT=0"is equivalent to removing ORBCHEAT altogether.There is a (perl) script available, called \Fort7Moments.pl" which extractsthe actual errors that have been entered, from the \fort.7" �le generated by\write�le, slow", and then works out their means and sigmas. Since there arevarious conventions and ambiguities in multipole de�nitions, it is good practiceto con�rm what errors are actually being assigned.The ERRORS command can also be used ahead of a PARMFIT instructionin order to ag elements whose strengths will be used as the parameters to beadjusted by PARMFIT to improve the large amplitude lattice behavior in thepresence of nonlinearity. Any of the magnet element names, fSIGfA, Bgf0-9gcan be prepended by the letter F , to yield fFSIGfA, Bgf0-9g to ag that element



Page 32 June 12, 1996for �tting. E�ectively this establishes a \family" of correctors of that particularmultipolarity, superimposed on all elements at all locations in the lattice withthe element name contained in that ERRORS command.The instruction MODIFY is entirely equivalent to ERRORS.HSTEER, VSTEER, HSTEER[1-6], VSTEER[1-6]Any one of these three commands must be preceded by an ANALYSIS com-mand. HSTEER and VSTEER are normally used together, and iteratively. Forexample: ANALYSIS, HSTEER, ANALYSIS, VSTEER, ANALYSIS, HSTEER,ANALYSIS, VSTEER.HSTEER utilizes the calculations performed in the previous ANALYSIS as-suming that there is at least one TYPE=`khka' steering adjustor element (i.e. ahkick type element with kick set to a de�nite value, normally zero) and at least asmany TYPE=`khkd' detector elements in the input lattice description, to attenthe orbit (i.e. improve the central orbit steering) horizontally. Elements can beplaced arbitrarily, except that placing two adjustors with no separation makesthe solution indeterminate. Also the possibility of two adjustors \�ghting eachother" needs to be kept in mind and made a part of whatever studies the code isbeing used for. It is all right for detectors to be arbitrarily close to each other|infact, this is a legitimate way to assign increased weight to the beam detectionin regions of special importance such as intersection regions. The least-squaresprocedure used is described in Section 6 of Appendix H.VSTEER utilizes the calculations performed in the previous ANALYSIS as-suming that there is at least one TYPE=`kvka' steering adjustor element (i.e. avkick type element with kick set to a de�nite value, normally zero) and at least asmany TYPE=`kvkd' detector elements in the input lattice description, to attenthe orbit (i.e. improve the central orbit steering) vertically. Elements can beplaced arbitrarily. The least-squares procedure used is described in Section 6 ofAppendix H.



June 12, 1996 Page 33HSTEER[1-6], VSTEER[1-6] perform steering that emphasizes the closed-orbit quality in a particular sector, or at any set of locations de�ned to makeup a family. As many as 6 matched families of adjustors and detectors of bothhorizontal and vertical detectors are allowed. As an example, HSTEER1 min-imizes a sum of squares of closed-orbit deviations at all family 1 detectors aswell as at all detectors that are not members of any family; it uses only family1 adjustors. (The inclusion of detectors not belonging to the family is to avoidlarge excursions elsewhere in the lattice.) Family membership is speci�ed by theelement name|the family number is a number from 1 to 6 which is the thirdcharacter of the element name. This naming distinction is ignored by HSTEERand VSTEER.KDERRS, see BPMERRORSMAKETHINMAKETHIN, [PRINT = fBEAMLINE, ELEMENTSg]The MAKETHIN command creates the data structures which represent thethin lens machine in a form appropriate for tracking. The reference orbit isfound, and the thick element representation is converted to a thin element one.This command should follow the TUNE and USE commands, and must precedeall the following commands. Inclusion of the PRINT directive causes geometricinformation at each element to be written to standard output.KDERRS, see BPMERRORSMODIFY, synonym for ERRORSThe ERRORS command was initially intended only to introduce random orsystematic errors, but it has often been used to make intentional lattice modi�-cations or compensations. Use of the synonym MODIFY should make the input�le more intuititive when the command is used to introduce intentional latticemadi�cations. All attributes of ERRORS and MODIFY are identical.PARMFIT, see also ERRORS



Page 34 June 12, 1996PARMFIT, fENERGY, PCg = <value>, XTYP = <value>, PX-TYP = <value>, YTYP = <value>, PYTYP = <value>, DPTYP= <value>, DELTA = <value>The PARMFIT instruction invokes a nonlinear �tting routine that adjusts allelements agged in the ERRORS command (q.v.) to optimize the large ampli-tude behavior of the lattice. Here \optimize" means \make the large amplitudeinterpolated transfer map be as closely equal to the small amplitude transfermap as possible." The \large" amplitudes at which the interpolated map is to beevaluated are enterred in the same format as the TYP values in the ANALYSIScommand. This command is implemented only in the C version, ctpot.READFILEREADFILE, f FAST, SLOW, COMPACT, SDSFILE gREADFILE reads the thin lens machine information from unit 7. Except fora TITLE line, READFILE is normally the �rst line of the input lattice �le unlessa special version is required. It should be followed immediately by an ANALYSISline, in order for teapot to regenerate various quantities that are not preserved inthe \fort.7" �le. (Some quantities are recalculated only if the TAPE directive isincluded.) These steps restore teapot to the same state it is in after processing aninput lattice in standard format and MAKETHIN. The purpose of this commandis to make it possible to input lattices tuned by TEAPOT or other programs, forinstance orbit correction programs. The option FAST(default), SLOW or COM-PACT refers to reading unformatted (FAST), formatted (SLOW) or formattedshort (without the atw, btw etc ) �les (COMPACT) respectively. As explainedunder WRITEFILE, the SLOW or COMPACT option should be avoided if pos-sible. Use of SDSFILE is described under WRITEFILE.RUN, see TRACK and DUMPBEAME�ective 10 July 1993, a RUN instruction with an XSEPTUM element present,or one that uses GAUSSIAN or BEAMTRAK tracking, should be followed by



June 12, 1996 Page 35a DUMPBEAM instructruction. This change was necessitated by a change indefault to keep particles, rather than dumping them, so that tracking the sameparticles can continue lattice parameters have been changed. This is required formodeling resonant extraction and other dynamic processes.TRACK, TRACKCLOTRACK[CLO],[fSINGLE,GAUSSIAN,BEAMTRAKg], fENERGY, PCg=<value>,[PARTICLE = fPROTON,ELECTRONg, NUMPART = <value>,SEED =<value>, SIGMACUT=<value>, APERTURE=<value>,EIGENAMP, PRINT1ST, USER1 = <value>, USER2 = <value>,USER3 = <value>, NSPRSSMX = <value>, ]START,[X =<value>, PX =<value>, Y =<value>, PY =<value>,DP = <value> ] , [EPSX = <value>, EPSY = <value>, SIGDELTA= <value>, PH = <value>], DL = <value>RUN, TURNS = <value>The track command tracks up to 1024 particles. The default particle typeis proton, and the energy is given in GeV. START starts a particle with thegiven initial conditions. TRACK interprets START command variables as being\absolute" displacements from the ideal orbit, and it prints out correspondingabsolute values. TRACKCLO interprets START command variables as being\relative" displacements from the actual closed orbit (which was calculated bythe most recent ANALYSIS call, or input with the CLOSEDORBIT command),and it prints out corresponding relative values.The default TYPE of tracking is for SINGLE particles. In the case of GAUS-SIAN tracking, the number of particles NUMPART, random number generatorSEED and the cuto� (SIGMACUT) for the gaussian distribution should be spec-i�ed. The default for NUMPART is 100, for SEED is 1 and for SIGMACUTis 4. For particle distributions other than Gaussian, to obtain the same beam-type processing (beam centroid etc.) and the same tracking sequence as appliesfor GAUSSIAN tracking, specify BEAMTRAK and enter starting coordinates



Page 36 June 12, 1996one-by-one using one START instruction per particle. An instance where thismight be found useful is modeling particle extraction, with only special parti-cles, perhaps having large amplitudes, being launched. To do this, element typeXSEPTUM can be used. Attributes of XSEPTUM are de�ned under SPECIALTEAPOT ELEMENTS. If there is any XSEPTUM present in the lattice it is as-sumed that BEAMTRAK=.TRUE. tracking is desired and EXTRACT=.TRUE.turn-by-turn output �les written. As explained with the XSEPTUM descriptionunder Special Teapot Elements, the command CONTINUE can be used alter-nately to contunue tracking the same particles as machine elements are varied insmall steps.The coordinate system is de�ned in the MAD manual. The tracking out-put contains pure horizontal and vertical displacements as default. For cou-pled machines, if transformed-to-eigen-coordinates are required (so that linearcoupling does not contribute to \smear" for example) you should include an\EIGENAMP" directive in \TRACK" or \TRACKCLO". PX and PY are thehorizontal and vertical momenta divided by the reference momentum. DP isthe momentum deviation from the reference momentum divided by the referencemomentum. DL is the (negative) path length di�erence.One START command is issued for each particle to be tracked. If a particleleaves a circle of radius equal to APERTURE, or receives a kick which producesa transverse momentum greater than the total momentum during tracking, it isnot tracked further. The parameter APERTURE describes the radius [m] of thephysical beam pipe and/or windows. The default value of APERTURE is 1m.The coordinates of the particles at each turn are written to unit 8 (and unit 18,28, 38, and 48 in some cases) (see Appendix B). Note that in the GAUSSIANand BEAMTRAK tracking cases, these �les contain the average, or centroid, ofall the particles coordinates instead the coordinates of all the particles in thedistribution. For GAUSSIAN tracking two START commands are necessary, the�rst specifying the conditions at the mean of the distribution and the secondspecifying the rms beam dimensions in the form of x (EPSX) and y (EPSY)



June 12, 1996 Page 37emittances (�), and the parameter Ph (PH). The parameters are related by thefollowing equation:�i � �i(invariant)= = �2� ln(1� Ph)�2i =�iThese can be made to represent �2i =�i by choosing PH=0.14714. The energyspread (SIGDELTA) is de�ned as ��=E0.To get �rst turn track output information at every element you should includea \PRINT1ST" directive in \TRACK" or \TRACKCLO"; the output will becalled \�rstturn.trk". Note that this is disabled for gaussian tracking.If there is any RFCAVITY present in the lattice it is assumed that the lon-gitudinal position and momentum are to be tracked and output, turn-by-turn.Otherwise only the four transverse components are tracked and output.As an option, parameters USER1, USER2, USER3 can be used to introducede�nable parameters for use by special user-generated tracking code. NSPRSSMXcan be used to suppress printout of intermediate turns in long tracking runs.Turns are printed out from the initial turn to endofbeg = (nturns - nsprssmx)/2and from begofend = endofbeg + nsprssmx to the end. By default no printout issuppressed.TRACKCLO, see TRACKTUNETUNE, MUX = <value>, MUY = <value>, K1F = <parametername>, K1D = <parameter name>The TUNE command uses the matrix representation of the thin lens machine,in which all elements are replaced by one thin element except quadrupoles ofTYPE=IR, which are replaced by four thin quadrupoles. The tunes are �t byvarying the parameters K1X and K1Y. This �tting compensates for the changein tunes in going from the thick lens to the thin lens machine. The <parametername> can be a global parameter or an element parameter, for example, qf[k1].



Page 38 June 12, 1996TUNTHOLD, see DECOUPLETUNETHIN, see DECOUPLETWISSTWISS, [PRINT = fBEAMLINE, ELEMENTSg], [TAPE]Twiss analysis using the matrix representation. Since all elements, includ-ing dipoles are treated as thin, TWISS will agree with other matrix codes onlyif the elements are adequately sub-divided. This typically requires special ef-fort only for small machines with tunes signi�cantly less than 10. In any case,no subsequent TEAPOT operations rely on TWISS and, its further use beyondcon�rming that the lattice �le is more or less as expected is discouraged. Nev-ertheless, a TWISS command should normally be included before MAKETHINto avoid certain (probably harmless) apparent discrepancies in the output print-out. If PRINT is omitted, the results of the analysis are only printed at the endof the machine. If PRINT = BEAMLINE is chosen, the Twiss parameters areprinted at the beginning of all sublines. PRINT = ELEMENTS causes printingof Twiss parameters at each element. If TAPE is speci�ed, the Twiss parametersare written to unit 3 in a format similar to the MAD tape3 format (see AppendixC).USEUSE <machine>Selects machine for subsequent operations.WRITEFILEWRITEFILE, f FAST, SLOW, COMPACT, SDSFILE gWRITEFILE writes a �le to unit 7 which describes the thin lens machine(see Appendix A). The options are:� FAST, the default, is unformatted.



June 12, 1996 Page 39� SLOW, ascii, formatted, This �le can be edited, but there is some loss ofprecision due to truncation of the output format. The main value of SLOW(or COMPACT) �les is to acquire diagnostic information for checking thecalculations, or to change parameter values before subsequent processing.� COMPACT, formatted, without the atw, btw etc. being printed out fornonmagnetic elements; otherwise like SLOW.� SDSFILE, a \Self-Descriptive Standard" �le consistent with ISTK (Inte-grated Scienti�c ToolKit.) This can be browsed and edited using the ISTKtool called \sid". At this time only sparc executables are included in thesoftware release, but they can be acquired for numerous other computerarchitectures. If \sid" is used, it should be customized using the \.sidopt"�le.If the purpose of the WRITEFILE is to generate a �le that will later be used,unedited, for input using READFILE, then FAST should be used. If both diag-nostic printout and a �le for later input are required, they should be generatedin two runs. For example the �rst run ends WRITEFILE[,FAST], its output issaved, then the second consists only ofREADFILE[,FAST]ANALYSISWRITEFILE, SLOW or COMPACTProbably the only instance in which the sequence WRITEFILE, SLOW thenREADFILE, SLOW is really needed is to permit hand editing of a \fort.7"�le. Since this �le is \at", sequentially numbered (rather than named) elementscan be located and modi�ed. This could also be accomplished by breaking outand naming the element in question in the standard input language �le, butthat has disadvantages: it complicates the hierarchy of the input �le and it maynecessitate repeating lengthy calculations. If the computer architecture beingused is such that an sds�le can be edited using \sid", Sds Interactive Dispaly, thenWRITEFILE, SDSFILE, followed by \sid", followed by READFILE, SDSFILE



Page 40 June 12, 1996is the procedure of choice.VERSIONThis command lets the user select a particuler version and must be enteredin the �rst line of the input lattice �le.The command usage : \ VERSION, 2.05 " selects tpot version 2.05. If theversion command is omitted the default (2.1, at least in early 1993) is used.Users with collimators in their input lattice �les, for example, have to invoke theversion command and select 4.0, since the standard version does not allow forcollimators.VSTEER, see HSTEERZWRITEThis command causes a `at' lattice description �le called `z�le' to be written.This �le can be used to submit the lattice, including any errors that have beenincluded, and any compensation that has been accomplished, to be transferredto a parallel processing computer, such as a Cray or a hypercube for subsequentprocessing. The output z�le includes su�cient headings to be self explanatory.Further detail on content and formatting can be inferred from the �le zwrite.f orzwrite.c.



June 12, 1996 Page 41APPENDIX AFORMAT OF UNIT 7, THE THIN LENS MACHINE DESCRIPTIONFormatted Version: �leform = 2.1line 1 �le format|format: f8.2line 2 version, date, time, jobname, seed, `random' or `ordered'ntot+1, nelemformat: 4a8,i8,a8,2i8line 3 title|format: a80line 4 `initial '|format: a8lines 5,6 x0, y0, z0, Pl, theta0, phi0, psi0format: 1p4e16.9, 1p3e16.9lines 7,8 betaxim0, betayim0, alphaxim0, alphayim0, xnuideal0, ynuideal0format: 1p4e16.9, 1p2e16.9line 9 keyword, elname, eltype, nmax (=max nonzero pole order)format: a8, a8, a4, i4lines 10-14 (bn, an, n=0,9), b01, a01, thklenformat: 4(5e16.9), 3e16.9,line 15 �x, �y|format: 1p2e16.9lines 16,17 x, y, z, Pl, theta, phi, psi, thklenformat: 1p4e16.9, 1p4e16.9lines 18,19 betaxim, betayim, alphaxim, alphayim, xnuideal, ynuideal,format: 1p4e16.9, 1p2e16.9(above 4 lines repeated for all thin elements. drifts areimplicit.)line n `endmach '|format: a8lines n+1,n+2 xf, yf, zf, Pl, thetaf, phif, psifformat:1p4e16.9, 1p3e16.9line n+3 orbit|format:1p4e16.9



Page 42 June 12, 1996FORMAT OF UNIT 7, Unformatted Version, Fileform > 2.0item 1 �le formatitem 2,3,4,5,6,7,8 version, date, time, jobname, seed, `random' or `ordered', nelemitem 9,10,11 totlen, totang, ntotitem 12 titleitem 13,14,15 elkeyw, elname, eltypeitem 16 nmax (=max nonzero pole order)item 17,18 bn[0-9], an[0-9]item 19,20 b01, a01item 21,22 �x, �yitem 23,24 X, Y, Zitem 25 sumlitem 26,27,28 theta, phi, psiitem 29,30 ideal betax, ideal betayitem 31,32 ideal alphax, ideal alphayitem 32,33 mux/2�, muy/2�item 34 orbit(1-4), (only at beginning of lattice), �leform > 2.01item 35 thklen, �leform > 2.02



June 12, 1996 Page 43APPENDIX BFORMAT OF THE TRACKING OUTPUT FILES, UNIT 8, 18, 28, 38, 481. Single Particle Tracking: (output on unit 8 only)line 1 version, `tracking', date, time, seedformat: 4(a8,2x), i8line 2 titleformat: a80The rest of the �le is free format.line 3 nparts, nturns, betax, betay, alphax, alphay, Qx, QyRepeat for each particle: fline 1 0 xi pxi yi pyi delta(xi pxi yi pyi with respect to the last calculated closed orbit)lines 2+ nturn xi pxi yi pyi (again wrt the closed orbit)for as many turns as the particle survivesline n -1 0.0 0.0 0.0 0.0after last turn if particle does not survive nturns turnsg



Page 44 June 12, 19962. Gaussian Distribution Tracking:line 1 version, `tracking', date, time, seedformat: 4(a8,2x), i8line 2 titleformat: a80The rest of the �le is free format.line 3 nparts (=1) , nturns, betax, betay, alphax, alphay, Qx, Qy[ for unit 8:line 4 0 x1 x2 y1 y2 delta(x1 x2 y1 y2 are the coordinates at monitors x1 and x2with respect to the last calculated closed orbit)lines 5+ nturn x1 x2 y1 y2 (again wrt the closed orbit) ][ for unit 18:line 4 0 x px y py nsurv delta(x px y py with respect to the last calculated closed orbit)lines 5+ nturn x px y py nsurv (again wrt the closed orbit)nsurv number of surviving particles at nturn ]
Tracking output is written to unit 8 on each passage of the lattice startingpoint. For BEAMTRAK tracking, only centroid values are printed. The sameprintouts are available at up to four lattice locations, marked by TYPE=X1,X2,X3,or X4; output goes to units 18,28,38 or 48 respectively. Eigencoordinates are notavailable under BEAMTRAK tracking irrespective of the EIGENAMP directive.Longitudinal coordinates are output if and only if there is an RFCAVITY in thelattice. For BEAMTRAK tracking, for historical reasons only, the longitudinal



June 12, 1996 Page 45output to unit 8 is suppressed, but output goes to units 18,28,38, or 48 as re-quested. To obtain output at a collimator one must introduce a marker to carrythe TYPE=X1,X2,X3, or X4. Otherwise doubled output results because thecollimator is replaced by two elements internally. A nuisance resulting from thetracking output feature is that you get fort.18,28,38,48 �les generated whetheror not you ask for them.



Page 46 June 12, 1996APPENDIX CFORMAT OF UNIT 3, MACHINE PARAMETERS FILE(SEE THE MAD MANUAL)RESULTS OF THE TWISS COMMAND (no errors)line 1 �le formatformat: f8.2line 2 version, `twiss ', date, time, jobname, seed, nonsense, npos(one more than the number of elements)format: 5a8, i8, l8, i8line 3 titleformat: a80line 4 8x, `initial ', 4x, 0.0, 0.0, 0.0, 0.0format: a8, a8, a4, f12.6, 3e16.9line 5 zerosformat: 5e16.9lines 6-8 alphax, betax, mux/2�, nonsense, nonsensealphay, betay, muy/2�, nonsense, nonsensenonsense, nonsense, nonsense, nonsense, Plformat: 5e16.9, 5e16.9, 5e16.9the elements follow in order, multipoles only (no drifts) element data accordingto MAD manual except length of all elements given as 0.5 meters due to a quirkof the graphics program used to plot the Twiss functions.



June 12, 1996 Page 47Repeat for all elements: fline 9 keyword, elname, eltype, length=0.5, eldataline 10 more eldataformat: 2a8, a4, f12.6, 3e16.9/5e16.9lines 11-13 alphax, betax, mux/2�, nonsense, nonsensealphay, betay, muy/2�, nonsense, nonsensenonsense, nonsense, nonsense, nonsense, Plformat: 5e16.9, 5e16.9, 5e16.9g �nal record isline n nonsense, nonsense, nonsenseline n+1 cos(mux), Qx, nonsense, �x max, nonsenseline n+2 cos(muy), Qy, nonsense, �y max, nonsenseformat: 3e16.9/5e16.9/5e16.9



Page 48 June 12, 1996APPENDIX DFORMAT OF UNIT N, MACHINE PARAMETERS FILE(SEE THE MAD MANUAL)RESULTS OF THE ANALYSIS COMMAND (errors included)line 1 �le formatline 2 version, `twiss ', date, time, jobname, seed, nonsense, npos(one more than the number of elements)format: 5a8, i8, l8, i8line 3 titleformat: a80line 4 8x, `initial ', 4x, 0.0, 0.0, 0.0, 0.0format: a8, a8, a4, f12.6, 3e16.9line 5 zerosformat: 5e16.9lines 6-8 alphax, betax, mux/2�, etax, etax0alphay, betay, muy/2�, etay, etay0(closed orbit):x0, px0, y0, py0, Plformat: 5e16.9, 5e16.9, 5e16.9the elements follow in order, multipoles only (no drifts) element data accordingto MAD manual except length of all elements given as 0.5 meters due to a quirkof the graphics program used to plot the Twiss functions.



June 12, 1996 Page 49Repeat for all elements: fline 9 keyword, elname, eltype, 0.0, alfaa, betaa, thetaaline 10 badlocaa, alfdd, betdd, thetdd, badlocddline 11 alphaxim, betaxim, xnuideal, etam(1-2,ielem) [etax, etaxp]line 12 alphayim, betayim, ynuideal, etam(3-4,ielem) [etay, etayp]line 13 orbitm(1-4,ielem) [cloorbx, cloorbxp, cloorby, cloorbyp], sumlg �nal record isline n nonsense, nonsense, nonsenseline n+1 cos(mux), Qx, nonsense, �x max, etaxmaxline n+2 cos(muy), Qy, nonsense, �y max, etaymaxformat: 3e16.9/5e16.9/5e16.9



Page 50 June 12, 1996APPENDIX EFORMAT OF UNITS 50, 51, 60 and 61, CPLTRK OUTPUT FILESRESULTS OF THE CPLTRK COMMANDThese �les can be displayed using xgraphUNIT 50line 1 Comment (`TitleText: X at Y BPM interpolated from adjacent X BPMs')line 2 Comment (`Markers: 1')line 3 blankline 4 Comment (`"interp"')lines 5 - N detector number, interpolated X at Y BPM for tracked particle with initial XKICKline N+1 blankline N+2 Comment (`"actual"')lines N+3 - 2N+3 detector number, actual X at Y BPMUNIT 51line 1 Comment (`TitleText: Y at X BPM interpolated from adjacent Y BPMs')line 2 Comment (`Markers: 1')line 3 blankline 4 Comment (`"interp"')lines 5 - N detector number, interpolated Y at X BPM for tracked particle with initial XKICKline N+1 blankline N+2 Comment (`"actual"')lines N+3 - 2N+3 detector number, actual Y at X BPMUNIT 60



June 12, 1996 Page 51line 1 Comment (`TitleText: X at Y BPM interpolated from adjacent X BPMs')line 2 Comment (`Markers: 1')line 3 blankline 4 Comment (`"interp"')lines 5 - N detector number, interpolated X at Y BPM for tracked particle with initial YKICKline N+1 blankline N+2 Comment (`"actual"')lines N+3 - 2N+3 detector number, actual X at Y BPMUNIT 61line 1 Comment (`TitleText: Y at X BPM interpolated from adjacent Y BPMs')line 2 Comment (`Markers: 1')line 3 blankline 4 Comment (`"interp"')lines 5 - N detector number, interpolated Y at X BPM for tracked particle with initial YKICKline N+1 blankline N+2 Comment (`"actual"')lines N+3 - 2N+3 detector number, actual Y at X BPM



Page 52 June 12, 1996APPENDIX FDEFINITION AND USE OF TYPE CODESAny lattice element can be assigned a type code consisting of up to fourcharacters, by including TYPE=`xxxx' in the element de�nition. Upper andlower case letters are not distinguished. The type codes recognized are:`ir ': causes a quadrupole to be split into four thin quadrupoles.`slnd': causes a sign reversal of the y component of the deection ina solenoidal type element. See Appendix G.` x1' and ` x2': mark the positions of beam position monitors at which par-ticle coordinates are recorded during tracking.`cncb' or `cnce': mark the ends of sectors for which transfer matrices are tobe calculated. The presence of even one such element inthe ring causes the precalculation during every ANALYSISoperation of the transfer matrices between all successive pairsof x2, cncn, and cnce elements and the origin; (if there isan x1 element it is assumed to be at the origin.) Duringtracking, concatenated tracking begins at every cncb elementand regular, exact, element-by-element tracking begins atevery cnce element. A cncb element is implicitly assumed tobe present at the origin if there is any cnc* element explicitlypresent. A ow chart typed as a comment in the code canbe referred to for further information. The purpose of suchconcatenation is to increase the tracking speed (by big factorsof like 10 or more depending on the lattice) through sectorsknown to include no `dominant' nonlinear elements.



June 12, 1996 Page 53`cpla' and `cpld': mark the locations of coupling adjustors and couplingdetec-tors respectively. Their presence cause precalculations to beperformed during every ANALYSIS command so the com-mand DECOUPRT can set the adjustors, based on informa-tion obtained at the detectors. See Appendix G.`khka' and `khkd': mark the locations of horizontal steering adjustors and de-tectors for orbit attening just like the above described fordecoupling. See Appendix H.`kvka' and `kvkd': mark the locations of vertical steering adjustors and detec-tors for orbit attening just like the above described for de-coupling. See Appendix H.`nofo': causes the zeroing of the b01 multipole of an SBEND element(see SSC-52, p13) thereby permitting the representation ofa rectangular bend element of very short length. It is notto be used to represent RBEND elements of �nite length;the slanted ends should instead be represented by standardMULTIPOLE elements or, e�ective Oct.'94, by RBEND ele-ments. (Note that the limit as a SBEND element is reducedto zero with the bend angle held �xed is not graceful, since inthat limit the dipole focusing e�ect becomes large, as it wouldwith an actual, in�nite magnetic �eld, dipole.) A solenoid oftype=nofo is a pure rotater, with no focusing action.



Page 54 June 12, 1996APPENDIX GCOUPLED BETATRON MOTION. FORMALISM
A general description of coupled betatron motion is given, �rst in a four com-ponent and then in a two component formalism. The state of coupling around thering is represented by generalized Twiss parameters as well as the parameters ofthe two eigenplanes. A prescription for adjusting correction elements to achievedecoupled motion is given. These formulas have been incorporated in the acceler-ator modeling program teapot for which this, the �rst part of a two part report,is an appendix. It includes the prescription used for adjusting coupling correctionelements to decouple the motion, based on diagnostic information obtained frombeam position monitors.



June 12, 1996 Page 551. Introduction.Various elements present in an accelerator such as skew quadrupoles, mis-aligned quadrupoles and solenoids cause coupling between horizontal and ver-tical betatron motions of the particles. Such motion in the presence of arbi-trary coupling will be analysed. The 4 � 4 linear matrix description of coupledbetatron motion is, in principle, straightforward, but the absence of a simplepseudoharmonic description like that available for motion in one plane is a seri-ous impediment. To recover this simplicity of description it is highly desireablethat the lattice be approximately decoupled. For some of the more explicit andmore practical formulas in this report, mainly appearing in the later sections,it is assumed that the coupling elements are weak enough that, perhaps afterpreliminary decoupling with two skew quadrupoles, horizontal and vertical mo-tion can be treated separately, with the other motion having only a perturbativee�ect. This means that a particle launched with a purely horizontal deectionwill remain within a few degrees of horizontal for a full turn. The purpose ofthis paper, as well as giving a general formulation of coupled motion, is to giveprescriptions for achieving this decoupling. These prescriptions are used in theaccelerator simulation program teapot.1Formulas are given which are valid even with strong coupling; they can beused for analysing the initial situation and for an initial global decoupling, saywith two skew quadrupoles, which is assumed to be su�ciently good to validatesome of the approximations made later. Traditionally a 4 � 4 formalism hasbeen used for the description of coupled motion and that path will be followedinitially. But even the fully general results will be re-expressed in 2 � 2 form.For pedagogical purposes this paper will be self-contained so that derivations ofwell-known formulas make up, loosely speaking, the �rst third of the paper,2;3;4reformulation of results known in a di�erent form the second third, and newresults the last third.The paper consists of the following sections.



Page 56 June 12, 19961: Introduction.2: General coupled motion.3: Transformation to an eigenbasis.4: Propagation of the generalized Twiss parameters around the ring.5: Behaviour near the coupling resonance.6: Solenoids.7: Compensation of coupling.Some notation to be used isQ = �2� = tune � frequency in 1/turnsC = cos�; S = sin�There will be various subscripts on these: x and y for horizontal and vertical, Aand D for eigenmotions close to horizontal and vertical respectively, and E forexternally imposed. e.g. QE is the \tune" of an external shaker.2. General Coupled Motion.Initially we follow Courant and Snyder2 closely, so as to have available themain general results.Letting x and y describe horizontal and vertical displacements from theclosed orbit, with px and py being the corresponding momenta, the transversephase space displacement can be represented by a vector(transposed) XT =(x; px; y; py) � (x1; x2; x3; x4). Using distance s along the closed orbit as theindependent variable, the equations of motion can be written in Hamiltonian



June 12, 1996 Page 57form, with derivatives with respect to s being symbolized by primes, asx0 = @H@px ; p0x = �@H@x (2:1)y0 = @H@py ; p0y = �@H@y (2:2)and the Hamiltonian H, in linearized approximation and using matrix notationand the summation convention, is given byH = 12XTHX = 12xiHijxj (2:3)where Hij is a symmetric matrix.Aside. A common source of confusion results when the term \phase space"is applied both to the x; x0 space and the x; px space. The former is commonduring practical operations but the latter, which we will stick to, is better forpreserving relativistic and Hamiltonian features in theoretical analysis. Whenthe absolute value of the particle's momentum is preserved (e.g. because thereis no r.f. acceleration) as will be assumed in this paper, then the ratio px=p is(at least for small angles) approximately equal to x0 and for most purposes thatidenti�cation can be assumed. This can be regarded as a choice of momentumunits for purposes of interpreting the formulas in this paper.Introducing a matrix S given in one and two dimensions byS =  0 �11 0 !; S = 0BBBB@ 0 �1 0 01 0 0 00 0 0 �10 0 1 0 1CCCCA (2:4)Hamilton's equations take the formX 0 = SHX (2:5)



Page 58 June 12, 1996Observe that ST = �S and S2 = �I (2:6)From any two solutions X1 and X2 of (2.5) an expressionXT2 SX1 = �x2px1 + x1px2 � y2py1 + y1py2 (2:7)can be constructed whose invariance follows from (2.5) and (2.6). Evolution of avector X from s0 to s is described by a transfer matrix M,X(s) =M(s; s0)X(s0) (2:8)The invariance of XT2 SX1, when X1 and X2 evolve according to (2.8), yields arelation which the transfer matrix must satisfyMTSM = S (2:9)which is called the symplectic condition.For analysing stability the eigenvalues of M are of paramount importance.That they come in reciprocal pairs can be seen from the following equations.Assuming that � is an eigenvalue of M and hence also of MT thendet jMT � �Ij = 0: (2:10)Multiplying by SM and using (2.9) yieldsdet jS � �SM j = 0:Multiplying by S, using (2.6) and dividing by � yieldsdet jM � 1�Ij = 0 (2:11)which completes the proof.



June 12, 1996 Page 59The 4� 4 matrix M can be partitioned in terms of 2� 2 matricesM =  A BC D! (2:12)A useful matrix operation is \symplectic conjugation" de�ned by�A = �SATS (2:13)For a 2� 2 matrix �A =  a bc d! =  d �b�c a ! = A�1 det jAj (2:14)The last expression is meaningful only if the determinant is non-zero. Whenapplied to the 4� 4 matrix M the result is�M =  �A �C�B �D! (2:15)But, because M is symplectic, one gets using (2.9) and (2.6) that SMTSM =SS = �I and, as a result �MM = I or�M =M�1 (2:16)When written out explicitly this gives relations among A,B,C, and D which followfrom the symplectic condition:A �C = �B �D � C �A = �D �B�AB = � �CD � �BA = � �DCA �A+B �B = 1 and C �C +D �D = 1 (2:17)These are not all independent. One useful result follows when one of the o�-diagonal sub-matrices, say C, vanishes, since then the other, B, must also vanish.



Page 60 June 12, 1996Digression on determinants. Just in this section M will stand for anarbitrary, not necessarily symplectic, matrix. There is no simple expression fora determinant such as det jM j in terms of the sub-matrices A,B,C, and D unlessthey have some special property which, for our intended application, will be thecase. In particular suppose that A = aI; i.e. A is proportional to the identity.One then �nds thatdet ����� A BC D ����� = det jAD �CBj [for A proportional to I] (2:18)To prove this one shows �rst thatdet ����� A 0C D ����� = det jAjdet jDjand then det ����� A BC D ����� = det jAjdet jD � CA�1Bj(both true for arbitrary A.) The latter follows by multiplyingM on the left by amatrix whose determinant is one 1 0�CA�1 1!and the desired result (2.18) follows.We can exploit the result of this digression and the earlier results by workingon the matrix M + �M =M +M�1 =  A+ �A B + �CC + �B D + �D! (2:19)This matrix exploits the fact that the eigenvalues of M come in reciprocal pairsso that the eigenvalues of M +M�1 are two doubly-degenerate values, each of



June 12, 1996 Page 61the form � = � + ��1. In the physically important case these sums will be realeven though the individual eigenvalues are complex and this will permit us tocomplete the analysis without ever working with complex numbers.The determining equation for the eigenvalues � isdet ����� (trA� �)I B + �CC + �B (trD � �)I ����� = 0 (2:20)Result (2.18) is applicable and we get0 = jM +M�1 � �Ij= j(trA� �)(trD � �)I � (C + �B)(B + �C)j (2:21)This simpli�es further since both terms are proportional to I. LettingC + �B =  c11 + b22 c12 � b12c21 � b21 c22 + b11! �  e fg h! (2:22)we have that B + �C =  h �f�g e ! (2:23)and (C + �B)(B + �C) = (B + �C)(C + �B) = (eh� fg)I = det jC + �BjI (2:24)as a result (2.21) yields(trA� �)(trD � �)� det jC + �Bj = 0 (2:25)whose solutions are�A;D = (trA+ trD)=2�q(trA� trD)2=4 + det jC + �Bj (2:26)where A(D) goes with the +(�) sign if trA � trD is positive and vice versa.This choice assures, for weak coupling, that A will correspond to x and D will



Page 62 June 12, 1996correspond to y. In the physically important case the eigenvalues of M havemodulus 1 so that there are real angles �A and �D satisfying�A;D = �A;D + 1=�A;D = exp(i�A;D) + exp(�i�A;D) = 2 cos�A;D (2:27)In the special uncoupled case for which B and C vanish these angles degenerateinto the horizontal and vertical phase advances �x and �y which satisfy�A;D = trA;D = 2 cos �x;y = 2 cos �A;D (2:28)From (2.26) and (2.27) follow the useful relation(cos�A � cos�D)2 = (trA� trD)2=4 + det jC + �Bj (2:29)From these formulas it can be seen that the sign of the determinant det jC + �Bjhas a special importance; if it is negative and the traces of A and D are equal then�A and/or �D will be complex, which implies instability. This can potentiallyoccur on \di�erence resonances" for whichQx �Qy = integer (2:30)or on \sum resonances" for whichQx +Qy = integer (2:31)It will be demonstrated in section 5 that the di�erence resonances are inherentlystable and the sum resonances inherently unstable. Commonly accelerators (es-pecially proton accelerators) are run close to a di�erence resonance (since areasbounded by nonlinear resonances are largest there.) This is only possible becausethe coupling resonance does not lead to instability though it can strongly inu-ence the particle distributions. In what follows it will be assumed that operation



June 12, 1996 Page 63is not close to a sum resonance (2.31) and some extra attention will be paid tooperation close to the di�erence resonance (2.30), especially in section 5 wheredet jC + �Bj will be evaluated explicitly.To determine the eigenvectors of M +M�1 it is useful to represent a dis-placement within the x phase space by �T = (x; px) and similarly �T = (y; py).For eigenvalue � it is easy to check that the vectorsX =  �C+ �B��trD�! ; Y =  B+ �C��trA�� ! (2:32)satisfy the equations(M +M�1)X = �X; (M +M�1)Y = �Y (2:33)for arbitrary � or �. These are however not independent, as can be seen using(2.24)and (2.25), and the same vector can be represented either as X or Y . Onthe other hand, as mentioned above, in the case of weak coupling, the motionlabelled A is close to x and D is close to y. It is natural then to pick �A inde�ning X and �D in de�ning Y . Toward this end we de�ne 2� 2 matrices RAand RD by RA = C + �B�A � trD ; RD = B + �C�D � trA (2:34)in terms of which independent basis vectors can be written asX =  �RA�!; Y =  RD�� ! (2:35)From (2.26) one can see that�A � trD = �(�D � trA) (2:36)from which it follows that �RD = �RA (2:37)The two components of � can be chosen independently to give two independent



Page 64 June 12, 1996eigenvectors each appproximately horizontal and expressed in the form X andsimilarly for Y (near vertical). In the next section such a speci�c choice will bemade.If RA were proportional to the identity then the vector X would be inclinedrelative to the horizontal by a small angle arctan[pdet jC + �Bj=(�A�trD)]. Butthat is not normally the case and the eigenmotion is not restricted to a singleplane. Rather the x and y motions resemble the electric �eld vectors in ellipticallypolarized light; this analogy will be developed further below, as will the geometryof the motion.It is conventional3;4 to de�ne an angle  , which for weak coupling is looselysimilar to that proposed in the previous paragraph, bytan 2 = 2pdet jC + �BjtrA� trD (2:38)This de�nition is motivated by formula (2.29) which can be regarded as a kindof Pythagorean relation as shown in the �gure.
2ψ

2|C+B|^(1/2)

|trA-trD|

2|cos(muA)-cos(muD)|

Figure 2: \Pythagorean triangle" of parameters for nearly equal tunes.The angle  does not have a simple orientational interpretation. Shortly adi�erent angle which speci�es the orientation of an eigenplane will be introduced.



June 12, 1996 Page 65If the uncoupled tunes are brought close together (by adjusting the normal quadsin the ring) the angle 2 increases and approaches �=2. By (2.29) or by the �gure,the eigenfrequencies cannot become equal. Their minimum separation is givenby jQD �QAjmin = pdet jC + �Bj�(sin�A + sin�D) (2:39)A routine accelerator decoupling operation which depends only on havinga position detector and spectrum analyser capable of measuring QA and QD,consists of empirical adjustment of regular and skew quads to minimize the tuneseparation. It is then assumed that the small change of regular quads to bring thetunes to their desired (normally not quite equal) values, re-introduces negligiblecoupling. This maneuver by no means assures that the eigenmotions are hori-zontal and vertical but, as we will see below, it does suppress resonant sloshingbetween horizontal and vertical motion over many turns.3. Transformation To An Eigenbasis.In order to de�ne Twiss parameters in a coupled lattice it is necessary to per-form a linear transformation from the x,y basis to an eigenvector basis. Thoughthe eigenvalues are complex this transformation will be performed in this sectionwithout use of complex numbers.In a two component space basis vectors can be expressed as�̂1 =  10!; �̂2 =  01! (3:1)These can be used to de�ne an x,y basis in the four component space.{̂(1) =  �̂10 !; {̂(2) =  �̂20 !; {̂(3) =  0̂�1!; {̂(4) =  0̂�2! (3:2)



Page 66 June 12, 1996Similarly, from (2.35), a basis of eigenvectors isÎ(1) = g �̂1RA�̂1!; Î(2) = g �̂2RA�̂2!; Î(3) = g RD�̂1�̂1 !; Î(4) = g RD�̂2�̂2 !(3:3)where g is a numerical factor yet to be determined. These bases are related by alinear transformation Î(k) = Gki{̂(i) (3:4)where summation here and in the sequel is assumed. A general vector can beexpressed in terms of either basis, yielding the equalityxi{̂(i) = XkÎ(k)= XkGki{̂(i) (3:5)and from this the coordinates are related, in component and in matrix notationby xi = XkGki; x = GTX (3:6)By substituting from (3.3)into (3.4)one obtainsGT = g I RDRA I ! (3:7)Furthermore, using (2.24) one can check that the inverse of GT is(GT )�1 = �D � trAg(�D � �A) I �RD�RA I ! (3:8)From (3.7) and (3.8) it is clear that the choiceg =s j�D � trAjj�D � �Aj (3:9)



June 12, 1996 Page 67yields the relations jGT j = j(GT )�1j = 1 (3:10)as well as �GT = (GT )�1 (3:11)which shows that G is symplectic, a result which will be essential in the nextsection.In the x; y basis the one turn map is given by (2.8)x+ =Mx (3:12)where x+ is the displacement after one turn. Substituting from (3.6) one getsGTX+ =MGTX (3:13)which means that the transfer matrix in the transformed basis isM = (GT )�1MGT = g2 I �RD�RA I ! A BC D! I RDRA I !=  A 00 D! (3:14)where A = g2(A+BRA �RDC �RDDRA)D = g2(�RAARD �RAB + CRD +D) (3:15)Exercise. Demonstrate, using relations (2.17) ,that the o�-diagonal elements of(3.14) do, in fact, vanish. (I have only succeeded in showing it indirectly.)From A and D the Twiss parameters in the eigenbasis can be extracted. Thedeterminants det jAj and det jDj must both be unity since they are equal to the



Page 68 June 12, 1996product of eigenvalues, which is one. As a result A, for example, can be writtenin \Twiss form" A11 A12A21 A22! =  cos�A + �A sin�A �A sin�A�A sin�A cos�A � �A sin�A! (3:16)where �A = arccos(trA=2) (3:17)It is assumed here that any ambiguity has already been resolved in (2.26). TheTwiss parameters are obtained from element-by-element comparison in (3.16)and they are�A = A12= sin�A; A = �A21= sin�A; �A = (A11 �A22)=(2 sin�A) (3:18)and similarly for D.A given vector x will, in general, have non-vanishing components in both ofthe eigenbases. The corresponding invariants can be evaluated using the inverseof (3.6) to obtain X, followed by substitution into the relations which de�neinvariants in the eigenbases,�A = AX21 + 2�AX1X2 + �AX22�D = DX23 + 2�DX3X4 + �DX24 (3:19)Finally we wish to characterize each of the eigenbases by a single orientation.It has already been observed that such motion is not restricted to a single plane,but rather the phase point moves on an ellipse in x; y space. It is reasonable tocharacterize the orientation of the A-eigenbasis, by the angular deviation, �A, ofthe major principle axis of the ellipse, away from the x-axis, and similarly for D.



June 12, 1996 Page 69Exercise. With the eigenmotion given in the \pseudoharmonic" formXA1 = cos AXA2 = (sin A � �A cos A)=�A (3:20)and with  A regarded as a free parameter, substitute into (3.6) to express themotion in the form x = g cos Ay = geA cos( A + �A) (3:21)where e2A = [RA11 � (�A=�A)RA12]2 + (RA12=�A)2�A = � arctan RA12=�ARA11 � (�A=�A)RA12 (3:22)In section 7 equations like (3.21) will be interpreted as relationships between mea-sureable quantities; they will serve a diagnostic purpose. Next �nd the equationof the ellipse in question and show that its angle of orientation is given bytan 2�A = � 2[RA11 � (�A=�A)RA12]1� [RA11 � (�A=�A)RA12]2 � (RA12=�A)2 (3:23)The orientation of the other eigenaxis can be found similarly.In general, the two axes are not orthogonal. Normally, since ideal behaviourwould have the eigenaxes exactly horizontal and vertical, the deviations of theseangles from zero can be regarded as a measure of the seriousness of the coupling.On the other hand, tilt of the eigenplanes may be considered inoccuous and a bet-ter measure might be the area of the eigenellipse which is equal to �g2jRA12j=�A.Notice, using (2.14) and (2.37), that RD12 = RA12 which means that the areasof the two eigenellipses are equal except for a coupling-independent (for weakcoupling) factor.



Page 70 June 12, 19964. Propagation of the Generalized TwissParameters Around the Ring.In an uncoupled machine the \pseudoharmonic" description is a representa-tion in which the evolution of either of the transverse coordinates is representedby the increase of a single angle, \the betatron phase." We now obtain a similarrepresentation, valid even in the presence of coupling.Consider two points in the ring labelled (0) and (1) and located at longitu-dinal positions s(0) and s(1). Propagation through the region is represented by atransfer matrix M (01) in the x,y basis.x(1) =M (01)x(0) (4:1)where, for the present discussion M (01), is assumed to be known. The transfor-mation (4.1) in general couples the two transverse coordinates.If it is assumed that M (0), the once-around transfer matrix at (0), is alsoknown, then the once-around transfer matrix at (1) is given byM (1) =M (01)M (0)M (01) (4:2)In writing this we have exploited the fact thatM(01) is symplectic so that formula(2.16) can be used to obtain (M (01))�1 as being equal toM (01) which can in turnbe obtained using (2.13). This circumvents the need for numerical evaluationof the matrix inverse. With M (1) known the Twiss parameters at (1) can bedetermined as in the previous section.What remains is to �nd the generalized betatron phase advances in goingfrom (0) to (1). The coordinates X(0) and X(1) in the eigenbases at (0) and (1)can be obtained from the inverse of (3:6) . It follows that the transfer matrix



June 12, 1996 Page 71from (0) to (1) in the eigenbasis is given byM (01) = (G(1)T )�1M (01)G(0)T (4:3)Since no propagation transformation such as this could mix the componentscorresponding to two di�erent eigenvalues, this transformation is block-diagonal.M (01) =  A(01) 00 D(01)! (4:4)Furthermore it was shown in (3.11) that the factors in (4.3) are individuallysymplectic so that (4.4) consists of two 2� 2 transformations of the form (3.16).Unfortunately the phase angle � in such a representation is not the exact analog ofthe betatron phase advance, except in the special case that the Twiss parametersat (0) and (1) are the same.The true betatron phase advance should behave additively as successive sec-tions are concatenated. By analogy with the 2 � 2 uncoupled formalism2 thetransfer sub-matrix can be parameterized as q�(1)A =�(0)A (cos (01)A + �(0)A sin (01)A ) q�(0)A �(1)A sin (01)Aq�(1)A =�(0)A (cos (01)A � �(1)A sin (01)A )!(4:5)where the missing element can be �lled in to make the determinant equal to one.Direct comparison yields  (01)A = arcsin A(01)12q�(0)A �(1)A (4:6)which completes the determination of the generalized Twiss parameters for thenear horizontal eigenmotion. The D parameters can be extracted similarly.



Page 72 June 12, 19965. Behaviour Near The Coupling Resonance.In section 2 it has been shown that the expression det jC + �Bj is especiallyimportant near the coupling resonance and here we will evaluate it in terms ofthe strengths of an arbitrary number of thin skew quadrupoles in an otherwisedecoupled lattice. To simplify this calculation we use a well-known transforma-tion of uncoupled motion in which propagation from point to point is representedby pure rotation in phase space with the transfer matrix taking the form cos� sin� � sin� cos� ! (5:1)where � is the appropriate x or y betatron phase advance in going from the �rstto the second point. To achieve this one performs the following transformationfrom XT � (x; px; y; py) to ~XT � (~x; ~px; ~y; ~py)~X = BX (5:2)where B =  Bx 00 By ! (5:3)Bx =  ��1=2x 0�x��1=2x �1=2x ! (5:4)B�1x =  �1=2x 0��x��1=2x ��1=2x ! (5:5)and similarly for y. In the new variables the x invariant emittance is given by�x = ~x2+ ~p2x and similarly for y. De�ning ~M , the once-around transfer matrix in



June 12, 1996 Page 73this representation, by ~M =  ~A ~B~C ~D! (5:6)one obtains A =B�1x ~ABxB =B�1x ~BByC =B�1y ~CBxD =B�1y ~DBy (5:7)This will be called the circular representation. In this representation it is naturalto work with dimensionless skew quadrupole strengths given byq =p�x�y=f (5:8)where f is the focal length of the rotated (by 45 degrees) quadrupole since thetransfer matrix is given by Bx 00 By!0BBBB@ 1 0 0 00 1 1=f 00 0 1 01=f 0 0 11CCCCA B�1x 00 B�1y ! = 0BBBB@ 1 0 0 00 1 q 00 0 1 0q 0 0 11CCCCA (5:9)The calculation of the transfer function once around the lattice proceeds byevaluating expressions such asM = 0BBBB@ C�{x S�{x 0 0�S�{x C�{x 0 00 0 C�{y S�{y0 0 �S�{y C�{y1CCCCA0BBBB@ 1 0 0 00 1 qi 00 0 1 0qi 0 0 11CCCCA0BBBB@ Cix Six 0 0�Six Cix 0 00 0 Ciy Siy0 0 �Siy Ciy1CCCCA(5:10)



Page 74 June 12, 1996where the notation ��{x = �x � �ixSix = sin�ixS�{x = sin��{x (5:11)and similarly for y and for cosines has been used. In this notation i refers to thetrip from the origin to the i'th skew quadrupole and �{ refers to the trip throughthe rest of the lattice back to the origin. The complete expression for M hasa product like (5.10) with a matrix for each skew element sandwiched betweenappropriate rotation matrices. We will, however, keep only terms quadratic inthe qi factors; that is we make a weak coupling assumption, to be quanti�edlater. As an exercise the reader can assure his or herself that the expansion ofdet jC + �Bj contains no terms linear in the qi and that the only quadratic termsare included in (5.10). More accurately, one should say that all the skew quadmatrices should be set to the identity except one and in that one the diagonalelements should be set to zero. Then one must sum over all skew quad locations.With the notation of (2.12) and a certain amount of algebra one obtains~B =  P qiS�{xCiy P qiS�{xSiyP qiC�{xCiy P qiC�{xSiy! (5:12)~C =  P qiS�{yCix P qiS�{ySixP qiC�{yCix P qiC�{ySix! (5:13)For the time being we can drop the tilde's since det jC+ �Bj is equal to det j ~C+ ~Bj.We get det jC + �Bj =Xi;j qiqj [(S�{yCix + C�{xSiy)(C�|ySjx + S�|xCjy)� (S�{ySix � S�{xSiy)(C�|yCjx � C�|xCjy)] (5:14)



June 12, 1996 Page 75This can be manipulated further to yield the resultdet jC + �Bj =Xi;j qiqj[sin(�jy � �iy) sin(�jx � �ix)+ sin(�y + �jy � �iy) sin(�x + �jx � �ix)]=Xi;j qiqj[(1� CyCx) sin(�jy � �iy) sin(�jx � �ix)+ SxSy cos(�jy � �iy) cos(�jx � �ix)] (5:15)where Sx;y and Cx;y refer to propagation around the entire lattice. This expressioncan be separated into squared terms, q2i (all having the same sign), and crossedterms qiqj (of either sign).det jC + �Bj = SxSyXi q2i + 2Xj>i qiqj� [(1� CxCy) sin(�jy � �iy) sin(�jx � �ix) + SxSy cos(�jy � �iy) cos(�jx � �ix)](5:16)This formula makes it plausible that the sign of det jC + �Bj is the same as thesign of SxSy. That will now be proved.A result such as that could only be true for su�ciently small values of the qiand is only of interest near a resonance. Hence we set Cx = Cy = C and Sy = Sxand obtain det jC + �Bj = SxSy[Xi q2i + 2Xj>i qiqj cos(�j ��i)] (5:17)where �i = �iy � �ix. (At a sum resonance one would use Sy = �Sx and obtaina somewhat di�erent expression.) We can de�ne a skew quad \phasor" strength~qi = qi exp(i�i) and then obtaindet jC + �Bj = SxSy(Xi ~qi)(Xj ~qj) (5:18)The factor multiplying SxSy is inherently positive which completes the proof.We can now complete the discussion of sum and di�erence resonances begun in



Page 76 June 12, 1996section 2. On sum resonances the factor SxSy is negative and hence so also isdet jC + �Bj. As we saw then, this causes instability on sum resonances. Ondi�erence resonances SxSy is positive and the motion is stable.It can now be seen from (2.26) that, for the success of the experimental pro-cedure of adjusting skew quads until the eigenfrequencies coincide, it is necessaryand su�cient that Pi ~qi vanish. This can be accomplished by the empirical ad-justment of any two skew quads in the ring, unless by chance they have the same\phase", which could perhaps occur because of the symmetry of their placement.The formula analogous to (5.16) but valid near the sum resonance can beapplied to another important issue which is to estimate the strength of the sumresonance caused by N random skew quads in the lattice. The crossed terms canbe expected to average to zero, unless there is a \structure" e�ect causing thephases and strength's to be correlated. Hence we getdet jC + �Bj ' SxSypN < q2 > (5:19)which can be used to obtain the \stop-band" width using (2.26).6. SolenoidsOrdinarily skew quadrupole are present in an accelerator only unintentionallyunless they have been included to compensate for solenoids present for detectorsof particle interactions. In this section we analyse such solenoids.Most magnetic elements in accelerators have only �eld components Bx andBy normal to the central trajectory, but a solenoid (length L) has mainly alongitudinal �eld Bz given byBz = 0 z < �L=2= B0 � L=2 < z < L=2= 0 L=2 < z (6:1)There will be an important end e�ect but initially we will calculate only the e�ect



June 12, 1996 Page 77of this longitudinal �eld.Consider a particle incident on this magnet with momentum and velocityvectors given by ~p = ~p? + ~pk (6:2)~v = ~v? + ~vk = ~pc2=E (6:3)In a paraxial approximation p ' pk. It is conventional to express the solenoidstrength by a factor K equal to (2R0)�1 where R0 is the cyclotron radius if thefull momentum were transverse (p? = p.)K = 12R0 = cB02pc=e (6:4)In transport notation let the incident vector of the above particle be given by(0; x0; 0; 0)T so that its transverse momentum is given by p? = x0p and it followsa spiral whose radius is R? = x0=(2K) with a transverse speed given by x0pc2=E.The time spent in the solenoid is L=vk ' LE=(c2p). Labeling the angle throughwhich the spiral turns by 2� as shown in the �gure, and combining the aboveformulas one obtains the result that� = KL (6:5)The output coordinates are given byxout = x0CS=Kyout = �x0S2=K (6:6)where C = cosKL and S = sinKL. Similar calculations for the dependence ony0 as well as calculation of the output values of x0 and y0 show that linearized
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Figure 3: Solenoid trajectory viewed from downstream.propagation through the solenoid can be represented by the mapping0BBBB@ xx0yy0 1CCCCAout = 0BBBB@ 1 CS=K 0 S2=K0 C2 � S2 0 2CS0 �S2=K 1 CS=K0 �2CS 0 C2 � S21CCCCA0BBBB@ xx0yy0 1CCCCAin (6:7)As mentioned above, however, we cannot, to the accuracy we are working, ignoreend e�ects. At the ends there will be x and y components of magnetic �eld whichcan be approximated as Bx = a(z)x; By = a(z)y (6:8)



June 12, 1996 Page 79where a(z) is a factor which can be obtained from the actual �eld componentBz which presumeably falls o� more slowly than is given by (6.1). These �eldcomponents are related by @Bx@x + @By@y + @Bz@z = 0 (6:9)When integrated from well outside to well inside the solenoid this yields(�L=2)+Z(�L=2)� a(z)dz = �B02 (6:10)Neglecting the length of the interval over which the �elds are changing, the endcan be represented by a transfer matrix resembling that of a skew quadrupole asin (5.10) but with one sign reversed. For example a particle with input vector(x; 0; 0; 0)T acquires a vertical deection given by�y0 = �cB0=2pc=e x = �Kx (6:11)and similarly for (0; 0; y; 0)T . When this is represented as a transfer matrix andthe output is also then, when combined with (6.7), the full transfer map for thesolenoid is0BBBB@ 1 0 0 00 1 �K 00 0 1 0K 0 0 11CCCCA0BBBB@ 1 CS=K 0 S2=K0 C2 � S2 0 2CS0 �S2=K 1 CS=K0 �2CS 0 C2 � S21CCCCA0BBBB@ 1 0 0 00 1 K 00 0 1 0�K 0 0 11CCCCAPerforming the multiplication yields the solenoid transfer matrixRS =  C S�S C! E 00 E! (6:12)where E =  C S=K�SK C ! ; (6:13)For a \thin" solenoid (which in high energy accelerators is what they almost



Page 80 June 12, 1996always are) there is a simple way in which it can be represented by a thin \multi-pole", call it Rt sandwiched between two drifts of length L=2, call their transfermatrices RL=2 = `�1. Rt is given byRt = `RS` =  CM SM�SM CM! =  C S�S C! M 00 M! ; (6:14)where the matrixM is given byM = `E` =  1 �L=20 1 ! C S=K�SK C ! 1 �L=20 1 ! : (6:15)To consider the possibility of breaking the solenoid into shorter lengths one canlet L become small while holding K �xed; in that limitM =  C + KL2 S CK (S �KL) + KL24 S�KS C + KL2 S !!  1 0�K2L 1! : (6:16)This has the satisfactory property that x and y are both continuous as a particlepasses through it which makes it a \kick" and hence symplectic. Of course thedrifts are also symplectic. This means that a solenoid can be made into multiple\thin" elements by breaking it into shorter lengths. In practice, this is probablyacademic because realistic solenoids really are thin in the sense that KL is muchsmaller than 1, and in any case breaking the solenoids into lengths shorter thanthe distance over which the end �elds fall o� would be illusory.In this way we see that solenoids can be replaced by thin elements in the samespirit as other elements are in the program teapot, with symplecticity preserved,tracking being exact in the thin element lattice, and more faithful representa-tion of thick elements resulting from breaking them into thinner elements. The



June 12, 1996 Page 81approximate thin element transfer matrix isRt =  C S�S C!0BBBB@ 1 0 0 0�K2L 1 0 00 0 1 00 0 �K2L 11CCCCA (6:17)This is a lens which is focusing in both planes and has focal length (K2L)�1followed by a coupling element which is a rotation by the small angle KL aroundthe longitudinal axis. The teapot code uses Eq. (6.17) which though approximate,being the product of a pure rotation and an obviously symplectic transformation,is exactly symplectic. As with other elements one can investigate the accuracy ofthe approximations by splitting a solenoid into shorter solenoids. Normally thedominant e�ect of a solenoid is the rotation.7. Compensation of CouplingReturning to equations (5.12) and (5.13) and incorporating the results of theprevious section on solenoids we can express the requirement that the lattice bedecoupled at one point by the requirement that the four elements of C + �B eachvanish. This will be much stronger than the condition that det jC + �Bj vanish,which, in section 5, was shown to be necessary for the tunes to be brought intocoincidence. At the location of a detector (label it d) one attempts to reduce the\o�-diagonal matrix"C + �B�A � trD =  RA11(d) RA12(d)RA21(d) RA22(d)! = B�1y (d) �qi ~Ti(d) �qi ~Ui(d)�qi ~Vi(d) �qi ~Wi(d)!Bx(d)(7:1)where ~Ti(d) = 12(Cx �Cy)��S�{y(d)Cix(d) + C�{x(d)Siy(d)�~Ui(d) = 12(Cx �Cy)��S�{y(d)Six(d)� S�{x(d)Siy(d)� (7:2)and there are two similar equations for ~Vi(d) and ~Wi(d) which will not be needed



Page 82 June 12, 1996in what follows. Performing the matrix multiplication in (7.1)and using an ad hocabbreviated notation we obtain RA11 RA12: : ! = �1=2y 0��y��1=2y ��1=2y ! ~T ~U~V ~W ! ��1=2x 0�x��1=2x �1=2x != ��1=2x �1=2y ( ~T + �x ~U) �1=2x �1=2y ~U: : ! (7:3)This performs the transformation back from the circular representation to corre-late with formulas in sections 1-5.Various features of these equations have to be explained. The \o�-diagonal"matrix RA has been reintroduced from (2.34) and evaluation of its elements interms of coupling strengths qi is from (5.12) and (5.13). The � option distin-guishes between skew quads and solenoids as was described in the last sectionwith the + sign being appropriate for skew quads. The index d has been intro-duced since these conditions may be applied at various locations d in the ringwhere the state of coupling can be measured. New symbols for the trigonometricfunctions have natural meanings such as S�{y(d) = sin(�y � �iy + �dy), if �iy > �dy.For y betatron motion �y is the phase advance around the whole ring and �iy��dyis the phase advance from the detector location d to the skew element location i.This amounts to setting the origin at d in the formulas derived up to this point.Care must however be taken in evaluating (7.1) since the rotation angles in (5.10)were implicitly assumed to be positive. To make �iy � �dy always positive (andsimilarly for x), the route from the detector to element i should always be in thesame, say clockwise, direction.For these formulas it is assumed that the coupling is weak enough that termsbeyond linear in the qi's can be neglected. Also, in evaluating the various fac-tors, the unperturbed phase advances and Twiss parameters are assumed to beavailable and reliable. (As mentioned before they include the focusing e�ect ofsolenoids.) In a real accelerator with errors these requirements would not neces-sarily be met.



June 12, 1996 Page 83We now consider the application of these relations to the decoupling of anaccelerator. In the sums appearing in (7.1) some of the qi's are presumeablyunknown while others (call them qa with a standing for \adjustor") are adjustableskew quads at locations labeled a. Separating these o� the elements of RA canbe written RA11(d) = R(0)A11(d) + NaXa=1 qaTa(d)RA12(d) = R(0)A12(d) + NaXa=1 qaUa(d) (7:4)where Ta(d) =��1=2x (d)�1=2y (d)[ ~Ta(d) + �x(d) ~Ua(d)]Ua(d) =�1=2x (d)�1=2y (d) ~Ua(d) (7:5)where there are Na adjustors in all and again only two of the four matrix elementshave been written. Unknown couplers have been lumped in the terms R(0)A11(d)and R(0)A12(d).As usual with correctors there are various ways of proceeding. One idea(which is only rarely a good one) is to write as many conditions as there are ad-justors and solve the resultant equations (7.1) for the adjustor strengths to makeRA vanish. We will proceed instead with a least squares prescription de�ningand then minimizing a \badness function"B(q1; :::; qNa) = NdXd=1 e2A(d)�x(d)=�y(d) (7:6)where e2A(d) was de�ned in (3.22). Recall that eA is the directly measurableratio of \wrong-plane amplitude" to \in-plane amplitude" for an eigenmotion.The � ratio converts this to an emittance ratio which results in all detector mea-surements having comparable weight in the subsequent �tting procedure. Thebadness is also approximately the appropriately normalized sum of the squares



Page 84 June 12, 1996of the elements in the upper row of RA summed over all of the Nd detector lo-cations. The reason that only these elements are used can be understood byreviewing the exercise at the end of section 3. In that exercise it was shownthat those two elements can be extracted from measurements with the monitorat location d. The lower-row-elements are related to slopes at d which are notdirectly measureable. It will be seen below that the explicit solution depends onhaving measured RA11 and RA12 individually, even though it is only a sum oftheir squares which enters B.Values of q1; :::; qNa will be sought which minimize the badness B and thatleads to the conditions @B@qa = 0; a = 1; :::; Na (7:7)It is assumed that there are at least as many measurements as there are adjustors.(That is Na � 2Nd.) By working with two detectors which are close to eachother and are known to have no coupling elements between them, reduction ofthe other two elements of RA could also be enforced. Alternatively, the sum ofsquares in (7.6) could be extended to include them, but then the prescriptionwould probably not be practical in a real accelerator.What follows amounts to solving the equations (7.7), with enough abbrevia-tions being introduced to make the equations look tractible. Using (3.22), (7.4),and (7.5), B can be expressed as a quadratic function of the unknown skew quadstrengths, which can be be represented as a vector Q = (q1; :::; qNa)T . Also de�nea Na �Na coe�cient matrixM = (Mab) = NdXd=1��Ta(d)� Ua(d)�x(d)=�x(d)��Tb(d) � Ub(d)�x(d)=�x(d)�++Ua(d)Ub(d)=�2x(d)��x(d)=�y(d) (7:8)



June 12, 1996 Page 85and de�ne a vector containing the inhomogeneous terms in (7.7)V = (Va) = � NdXd=1��R(0)A11(d) �R(0)A12(d)�x(d)=�x(d)��Ta(d)� Ua(d)�x(d)=�x(d)�++R(0)A12(d)Ua(d)=�2x(d)���x(d)=�y(d) (7:9)Then (7.7) becomes MQ = V with solutionQ =M�1V (7:10)



Page 86 June 12, 1996APPENDIX HLATTICE IMPERFECTIONS AND THEIR COMPENSATION1. Introduction.This appendix has been copied from another source. The early sections havebeen left in for coherence even though the material is not that germane to theoperation of teapot. The relevant material begins in Section 4.In these notes some of the more elementary possible lattice defects will beanalysed and methods will be described which can be used to compensate forthem. In order to perform such compensation it is �rst necessary to have instru-ments present to measure the deviation from design values. We will adhere to anotation in which the letter d (for detector) is used as the index identifying suchdetectors, there being Nd detectors altogether. The other requirement is to haveNa elements (a for adjustor) which are to be set based on the detector readingsto give a \best" compensation. Though it is not the only possibility we willdescribe only methods for which \best" means a least-squares minimum solutionand there will be at least as many detectors as there are adjustors. (Nd � Na)Emphasis will be placed on defects of periodic lattices. Any circular accelera-tor satis�es this requirement, at least once a circulating beam has been achieved.Another important problem is the adjustment of �nite nonperiodic lattice sec-tions. The terminology \open sector" will be used to refer to such a section ofbeam-line.Since the most important parameters of an accelerator are its tunes, it isappropriate to analyse �rst those errors which a�ect them. It is, however, eco-nomical before that to derive a general formula which can be used to analyseany perturbation of an otherwise ideal lattice; that will be done in Section 2,and the formula used to calculate the local closed orbit shift caused by a dipoleperturbation. In Section 3 \The Golden Rule", which gives the tune shift caused



June 12, 1996 Page 87by a change in quadrupole strength, is derived. This is used to perform thosetune adjustments whose importance was just emphasized. During acceleratoroperations it is customary to �x the tunes �rst thing and to reset them everytime any subsequent adjustment causes them to shift. This places a very reliableconstraint on the lattice functions, which are used in calculating subsequent ad-justments, thereby enhancing con�dence in the validity of the procedures. Thenext most important lattice adjustment is the adjustment of the beam orbitonto the centerline of the magnetic elements. Bend errors in the dipole elementsand survey errors in quadrupole placement are normally the dominant sourcesof closed orbit errors. To simplify the analysis an algebraic transformation to a\circular" representation of betatron motion is described in Section 4; it is usedto propagate the closed orbit around the ring in Section 5. In Section 6 closedorbit adjustment is described and in Section 7 the adjustment of the central orbitthrough open sectors is described.2. A Di�erence Equation Which DescribesThe E�ect of a Single Bend Error.Let us suppose that there is a zero-length perturbing element in the ring ata point which, for now, we take to be the origin. On the t'th turn it causes adeection given by �pyt. Here, for de�niteness, we are working explicitly with ymotion but the formulas apply equally to x. Propagation once around the ringis described by the transfer map in \Twiss form", ypy ��py=2! t+ 1 =  Cy + �ySy �ySy�ySy Cy � �ySy! ypy +�py=2! t (2:1)and a similar equation can be written for backwards propagation from t to t� 1.Note that py is evaluated at the middle of the perturbing element; it is necessaryto be speci�c about this since py varies discontinuously in passing through theelement. With � standing for the tune Q times 2�, we are using the notation



Page 88 June 12, 1996Cy � cos�y and Sy � sin�y and are intentionally using the subscript t as a turnindex to be suggestive of the time measured in units of the revolution period. Itwill however always be an integer. For these two maps the top equations areyt+1 = (Cy + �ySy)yt + �ySy(py +�py=2)tyt�1 = (Cy � �ySy)yt � �ySy(py ��py=2)t (2:2)By adding the equations (2.2) one eliminates py and obtainsyt+1 � 2Cyyt + yt�1 = �ySy�pyt (2:3)After solving this for yt it will be possible to obtain pyt from the equationpyt = yt+1 � yt�1 � 2�ySyyt2�ySy (2:4)which is obtained by subtracting the equations (2.2).Initially we will analyse the e�ect of a constant bend error so the deection�Pyt will not, in fact, depend on t, and hence will be symbolized by �Py. Theterm on the rhs of (2.3) can be called an inhomogeneous term while all terms onthe lhs are homogeneous. As with di�erential equations the solution will be thesum of a de�nite solution of the inhomogeneous equation plus the superpositionof any solution of the homogeneous equation. We know that the latter solutioncorresponds to free betatron oscillation which is not presently of interest, and weset it to zero. Solution of the inhomogeneous equation is trivial, with the resulty = �y Sy=21�Cy�py (2:5)and using (2.4) the slope at the center of the perturbing element can be obtainedpy = ��y Sy=21�Cy�py (2:6)The displacement y is continuous across the thin bend element but there is akink in the slope as shown in the �gure.



June 12, 1996 Page 89An important feature of closed orbit deformation by bend errors can be in-ferred immediately from (2.5) and that is that the deformation becomes arbitrar-ily large when the cosine of the tune Cy approaches 1. This occurs when the tuneapproaches an integer and is a manifestation of the so-called \integer-resonance".When the tune is an exact integer both the particle coordinate and slope repeatexactly after a full turn so that the deection �py accumulates every turn; adivergent process. Resonances are the natural enemies of accelerators; they arealways due to the accumulation of undesireable behavior over many turns. Sincea particle in an accelerator circulates without damping for so many turns it ishighly susceptible to this. This integer resonance is the most elementary and themost lethal of such resonances. Even when the cosine is not exactly 1 the pres-ence of the factor 1�Cy in the denominator of (2.5)leads to a strong sensitivityof the closed orbit to bend errors for tune values close to an integer, and for thatreason, such tune values are normally avoided.



Page 90 June 12, 19963. The Golden Rule Relating Quadrupole Perturbations and Tunes.Starting from the di�erence equation (2.3) which relates the displacementson three successive turns the tune shift due to a quadrupole perturbation can beobtained directly. The deections su�ered by a particle as it passes through anerect thin quadrupole of focal length f are given by�pxt =(qx=�x)xt�pyt =(qy=�y)yt (3:1)where \normalized" quad strengths qx and qy have been de�ned byqx =�x=fqy =� �y=f (3:2)These are dimensionless. If f were the focal length of a regular arc quad thenqx and qy would be of order 1 (worth remembering for the mental evaluationof some of the following formulas), but the magnitude of a typical perturbationwhere these formulas will be employed will be less by perhaps a factor of 100 ormore. The reader may be annoyed to see the intrusion of beta-functions into suchbasic formulas but it can be further justi�ed as follows. It is only for historicreasons that a thin lens is characterized by its focal length. The inverse focallength is more natural, being proportional to the lens \strength", and the symbolq is often used for that. As long as one is paying the price of introducing a newsymbol it seems sensible to obtain some further bene�t. Working with dimen-sionless quadrupole strengths sympli�es many future formulas and incorporatingthe minus sign at this point will save us from writing separate formulas for x andy motion. As de�ned, for either plane, positive q corresponds to a defocusingquad. When (3.1) is substituted into (2.3), the result isyt+1 � 2Cyt + yt�1 = Sqyt (3:3)where y can refer either to horizontal or vertical motion and it has accordingly



June 12, 1996 Page 91been suppressed as a sub-script. Naturally C and S are to be evaluated for thecorresponding tune.In (3.3) the e�ect of the perturbing quadrupole is incorporated on the rhsof the equation while the rest of the lattice is described by the lhs. But clearlythe rhs can be grouped with the second term on the lhs since they are bothproportional to yt. Since the coe�cient of this combined term can be nothingother than cos 2�(Q+�Q), the cosine of the perturbed phase advance per turn,we get cos 2�(Q+�Q) = cos 2�Q+ qS=2 (3:4)where �Q is, naturally enough, called the tune shift caused by the quadrupoleperturbation. This is an exact relationship, and it is simple enough, but anapproximate form obtained by Taylor expansion valid for small �Q is what isnormally used. That result is �Q = � q4� (3:5)This will be referred to as \The Golden Rule" as it is so simple and so important.Notice that the result is independent of the location in the ring where the elementis placed, though a lattice dependent factor has been factored out in the de�nition(3.2). Also note that a focusing quad in fact focuses, which shortens the betatronwavelength and increases the tune.If there are many small quadrupole perturbations qi then, to terms linear inthe qi's, the tune shift is given by�Q = � 14�X qi (3:6)Commonly in a sum like this some of the terms, being due to errors, are unknown,while others correspond to compensating elements which the accelerator operatorcan adjust. Grouping the former terms and calling their sum �Q(0), the tune



Page 92 June 12, 1996shift is given by �Q = �Q(0) � 14� NaXa=1 qa (3:7)where, as mentioned earlier, the subscript a is used for adjustors. This is the �rstencountered, and the simplest, of the equations of this type which are used todetermine the settings of adjustors. If there is just one adjustor and it is desiredthat �Q vanish, we get q = 4��Q(0) (3:8)To apply this formula �Q(0) would be measured using a beam position monitorand spectrum analyser and q would be set accordingly.4. The Circular Representation of Betatron Motion.We shall be analysing betatron motion in a lattice which has small devia-tions away from the design elements and for that it is convenient to perform atransformation of uncoupled motion in which propagation from point to point isrepresented by pure rotation in phase space with the transfer matrix taking theform  cos� sin� � sin� cos� ! (4:1)where � is the appropriate x or y betatron phase advance in going from the �rstto the second point. To achieve this one performs the following transformationfrom XT � (x; px; y; py) to ~XT � (~x; ~px; ~y; ~py)~X = BX (4:2)where B =  Bx 00 By ! (4:3)



June 12, 1996 Page 93Bx =  ��1=2x 0�x��1=2x �1=2x ! (4:4)B�1x =  �1=2x 0��x��1=2x ��1=2x ! (4:5)and similarly for y. In the new variables (which will be called the circular rep-resentation because the phase-space orbit is a circle) the x invariant emittanceis given by �x = ~x2 + ~p2x and similarly for y. De�ning the once-around transfermatrix by M =  A 00 D! (4:6)and the once-around transfer matrix in the new representation by~M =  ~A 00 ~D! (4:7)one obtains A =B�1x ~ABxD =B�1y ~DBy (4:8)In terms of the dimensionless quadrupole strengths de�ned in (3.2), where f isthe focal length of the quadrupole (which is assumed to be erect), the transfermatrix is given by Bx 00 By!0BBBB@ 1 0 0 01=f 1 0 00 0 1 00 0 �1=f 11CCCCA B�1x 00 B�1y ! = 0BBBB@ 1 0 0 0qx 1 0 00 0 1 00 0 qy 11CCCCA (4:9)It is di�cult to maintain a sign convention which is universally regarded as natu-ral and, for that reason, the reader has to take responsibility for getting the signsright when these formulae are applied to an actual problem. In a later section in



Page 94 June 12, 1996which skew quadrupoles and other elements which couple the x and y motionsare analysed this full 4� 4 formalism will be re-introduced, but for now we cananalyse either the x or the y motion separately using a 2� 2 formalism.5. Propagation of the Closed Orbit Around the Ring.Still assuming a single bend error the results of the previous sections canbe combined to obtain the closed orbit anywhere in the ring, since propagationaround the unperturbed lattice is indistinguishable from a free betatron oscilla-tion. At this point we will simplify the notation a bit by suppressing the subscripty but adding a new subscript i which identi�es the particular bend error in prepa-ration for handling many such errors. Adapting (2.5) and (2.6) accordingly yieldsthe closed orbit coordinates at the center of and just after an element causingdeection �pi as yi =�i S=21� C�pipi =� �i S=21�C�pipi+ =(��i S=21� C + 12)�pi (5:1)We wish to propagate this closed orbit through the lattice to the location of aposition detector d. This is accomplished by transformation to the circular rep-resentation followed by propagation around the ring using matrix multiplication.Explicitly (yd; pd)T=�pi is given by �1=2d 0��d��1=2d ��1=2d ! C(d; i) S(d; i)�S(d; i) C(d; i)! ��1=2i 0�i��1=2i �1=2i ! �i S=21�C��i S=21�C + 12 !(5:2)where the notation is that C(d; i) stands for the cosine of the phase advance�di from i to d and similarly for S(d; i). Some of the following formulas willonly make sense if �di is nonnegative. Completing the matrix multiplications in



June 12, 1996 Page 95(5.2)yields the result ydp�d =[ S1�CC(d; i) + S(d; i)]p�i�pi=2=cos(�=2� �di)2 sin �2 p�i�pi (5:3)and a similar relation for pd which will not be as useful to us since the detectorat d measures yd not pd.As was done in the discussion of quadrupole perturbations we now super-impose the terms from all bend errors after �rst segregating those terms due tounknown elements from those due to adjustors, with the former being lumpedinto a term y(0)d =p�d.ydp�d = y(0)dp�d + NaXa=1 cos(�=2� �da)2 sin�=2 p�a�pa (5:4)
6. Improvement of the Closed Orbit Using Steering Correctors.In an accelerator there are invariably steering elements present for the purposeof improving the closed orbit. In the design of early (and hence small) acceleratorsbend and survey tolerances were held tight enough to to assure that the closedorbit stayed within the vacuum chamber, but as the machines became largerthis became progressively more di�cult. Fortunately it was also found to beoperationally easy to adjust steering elements based on the orbit measurementby beam position monitors (bpm's). That will now be described. Usually withcorrectors there are various ways of proceeding. One idea (which is only rarely agood one) is to write as many conditions as there are adjustors and then solve theresultant equations (5.4) for the adjustor strengths to make yd vanish at each ofthe detectors. We will proceed instead with a least-squares prescription, de�ning



Page 96 June 12, 1996and then minimizing a \badness function"B(�p1; :::;�pNa) = NdXd=1 y2d(d)=�(d) (6:1)Values of �p1; :::;�pNa will be sought which minimize the badness B and thatleads to the conditions @B@�pa = 0; a = 1; :::; Na (6:2)It is assumed that there are at least as many measurements as there are adjustors.(That is Na � 2Nd.) By working with two detectors which are close to each otherand are known to have no bend errors between them, reduction of the the slopepd could also be enforced.What follows amounts to solving the equations (6.2), with abbreviations beingintroduced to make the equations compact. Using (5.4) B can be expressed as aquadratic function of the unknown bend strengths, which can be be representedas a vector Q = (�p1; :::;�pNa)T . Also de�ne a Na �Na coe�cient matrixM = (Mab) = NdXd=1�Ta(d)Tb(d)� (6:3)where Ta(d) = cos(�=2� �da)2 sin�=2 p�a (6:4)and de�ne a vector containing the inhomogeneous terms in (6.2)V = (Va) = � NdXd=1 y(0)dp�(d)Ta(d) (6:5)Then (6.2) becomes MQ = V with solutionQ =M�1V (6:6)



June 12, 1996 Page 97APPENDIX IMODELING THE EFFECTS OF WIGGLERSWeiru Wang and Richard TalmanAn ideally designed wiggler would cause neither an orbit displacement nor anorbit deection, but that is not the usual situation. An even number of identicalbut alternating poles cause no net deection, but cause an orbit translation. Anodd number of poles could cause no orbit translation but cause a deection. Onlyby having half-poles at each end would one achieve both advantages. If (as weassume) the wiggler designer was not far-sighted enough to provide this feature,it is necessary for the lattice designer to provide extra steering as shown in the�gure.An easy compensation is possible for a wiggler with an odd number of identi-cal alternating poles, if there are steering elements just upstream and just down-stream as shown.The lower �gure shows that one certainly does not want to insist on normalentry to the �rst bend element. This, plus the fact that negative bend sec-tor magnets, are at best confusing, suggests that wigglers are best modeled byrectangular bending magnets, or \RBEND's" as they are called in the standardlattice description. For this reason TEAPOT was modi�ed to accept RBEND'sin January, 1994. RBEND elements cause vertical focusing but no horizontalfocusing. Upon deep reection you are supposed to be able to convince yourselfthat both + and � poles cause focusing (as contrasted to both defocusing, orfocusing/defocusing).Tuning up TEAPOT to model wigglers must proceed by stages, and dependson understanding the idiosyncrasies of the code. The most important of these isthat magnet elements such as SBEND, RBEND, QUADRUPOLE, appearing inthe lattice description, de�ne the design orbit. No matter how mispowered such
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Figure 4: Steering e�ects of wiggler.elements are, the code declares there to be no closed orbit deviations. (Thereis, however, control on the global closed orbit in that deviations from once-around closure, both in angle and position, are printed out.) When RBEND'sare included in the lattice, they physically change the design orbit relative towhat it was before but TEAPOT (correctly) asserts that there are no closed



June 12, 1996 Page 99orbit deviations (relative to what the input �le has declared to be the desiredlattice.) If the geometry is simple, as in the upper �gure, the external steeringelements can be dead-reckoned so that insertion of the wiggler plus steering hasno e�ect on the orbit (except for a small increase in circumference and the smalldeviations internal to the wiggler.)In the more realistic situation where there are not conveniently located exter-nal steering elements it is necessary to use more remote steering to compensatefor the (inevitable) wiggler steering and/or displacement. If one wishes to useTEAPOT to adjust this steering one must go through a �rst stage in whichthe wiggler is modeled with HKICK elements. TEAPOT calculates deviationsfrom (what it assumes is) the design orbit, and if asked using HSTEER or OR-BCHEAT sets nearby steering elements (type khka) to minimize the closed orbitdeviations at detectors (type khkd). At this phase the vertical focusing e�ect ofthe wiggler will not yet have been correctly included because HKICK does notinclude focusing. Once the HKICK settings have been determined, the HKICKelements modeling both the wiggler and the external steering must be replacedby RBEND elements. As mentioned before (except for the closure requirement)TEAPOT will (misleadingly) declare that the compensation has been perfect,and will indicate zero closed orbit deviations everywhere. This simply reects(as in true machine operation) that one has rede�ned the design orbit to be thewiggler-on closed orbit. Sample �les illustrating some of these procedures are in$TPOT/ftpot/test/dat/wigg and $TPOT/ftpot/test/dat/wigg . The followingreport by Weiru Wang gives the formulas used.EFFECTIVE R AND T MATRICES FOR 3-D WIGGLER FIELDSThese notes describe formulas used for modeling wigglers in TEAPOT. Sincelongitudinal magnetic �eld components play an essential role, the traditionalmagnetic �eld \multipole expansion" cannot be used, but a truncated Taylorseries can be. At this time it assumed in the code that the motion is fully rel-ativistic. For application to proton accelerators it will be necessary to review



Page 100 June 12, 1996the formulas and correct them as appropriate. The R and T matrices calcu-lated here (and con�rmed by Runge-Kutta comparison) have been incorporatedin TEAPOT. It should be appreciated that inclusion of this truncated approx-imation is necessarily non-symplectic, which may invalidate long term trackingresults.In Halbach's approximation, the magnetic �eld components in the wigglerare Bx = B0kxky sinh(kxx) sinh(kyy) cos(kzz)~B = 8><>: By = B0 cosh(kxx) cosh(kyy) cos(kzz) (8)Bz = �B0kzky cosh(kxx) sinh(kyy) sin(kzz)The wave numbers are related byk2z = k2x + k2y :A complete wiggler is made up of numerous wiggler sections. In this reportone such period will be analysed and in a lattice description �le there will beone entry for each period. For example, for a CESR wiggler, there are twelveperiods. Consider a period centered on a symmetry point z=0 where By = B0.as in Fig. 1 .Each section contains a half pole on each end. When placed one after theother, only the end sections are left with half poles. This may or may notcorrespond to the actual hardware, but the present discussion assumes it to bethe case. (For the present CESR con�guration it appears to be a reasonableapproximation.)As a zeroth approximation, assume that the e�ect of the wiggler on themotion of electrons is sine-like in the x-direction and negligible in the y-direction.x(z) = xin + x0inz +Ax cos2(kzz2 )
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Figure 5: Sectionx0(z) = x0in � kzAx2 sin(kzz)8>>>>>>>><>>>>>>>>: y(z) = yin + y0inz (9)y0(z) = y0inz = ctxin; x0in; yin; y0in are the initial values. Since the amplitude Ax is to be regardedas an input parameter for the wiggler it must be precalculated|the integralover By is easy for the equilibrium orbit if transverse velocity is neglected. The



Page 102 June 12, 1996coe�cient Ax of the \ansatz" form used as zeroth approximation isAx = 2cB0(pc=e)k2z (10)Corresponding to the displacements Eq. (9), the velocity components aredxdt = x0inc� kzAx2 sin(kzz)c~v = 8>>>><>>>>: dydt = y0inc (11)dzdt = cUsing the Lorentz force equation dpdt = e~v � ~B (12)the trajectory equation isx00x̂+ y00ŷ = cB0(p0c=e)ky 0B@ x̂ ŷ ẑdxdt dydt 1Bx By Bz1CA (13)and the angular deections are�x0 = cB0(p0c=e)ky (y0inkzI1 + kyI2)�y0 = cB0(p0c=e)ky (kxI3 + kzx0inI1 � k2zAx2 I4)where I1 = lZ�l cosh(kxx) sinh(kyy) sin(kzz)dz



June 12, 1996 Page 103I2 = lZ�l cosh(kxx) cosh(kyy) cos(kzz)dzI3 = lZ�l sinh(kxx) sinh(kyy) cos(kzz)dz (14)I4 = lZ�l cosh(kxx) sinh(kyy) sin2(kzz)dzTo evaluate the integrals I1 � I4, we keep only leading terms for x! 0cosh(x)! 1 + x22 and sinh(x)! xAssume xin; x0in; yin; y0in are small. Putting Eqs. (9) into Eqs. (14), and keepingonly �rst order terms, we obtain the quantities needed to determine the R-matrixelements I1 � y0in(2�kyk2z )I2 � �A2xk2x4kz + xin(�k2xAx2kz )I3 � yin(Ax�kxky2kz )I4 � yin(�kykz )Note that there is a (small) constant contribution to I2. It presumably causesa closed orbit shift that must, at least in principle, be compensated when thewiggler ie turned on.To obtain both R and T matrices we use Mathematica to perform the ex-pansions and integrations. Truncating to quadratic order, the results are�x0�cB0p0c=e = A2xk2x4kz + Axk2x2kz x� 2k2xk3z x02 + A2xk2xk2y8kz y2 � 2k2yk3z y02 � 55A2xk2xk2y144k3z y02



Page 104 June 12, 1996+ �2A2xk2xk2y24k3z y02 + 5A2xk2x24kz y02 (15)�y0�cB0p0c=e = Axk2x2kz y � Axkz2 y � 5A3xk2xkz64 y + A2xk2xkz4 xy � 2kz x0y0 � 5A2xk2x9kz x0y0+ 4k2xk3z x0y0 + �2A2xk2x12kz x0y0 (16)At the zero'th order approximation, the transfer matrix isR(z ) � 0BBBB@ 1 z 0 0cB0p0c=e �k2xAxkz 1 0 00 0 1 z0 0 cB0p0c=e(�Axk2x2kz � �kzAx2 ) 11CCCCAFor this report, the numerical parameter values used areB0 = 1:2T; p0c=e = 5�109V; kx = 6:4m�1; kz = �=0:098m�1; Ax = 1:4�10�4m:These are the parameters used to describe the wiggler in the lattice description�le (with the exception that, since they are redundant according to Eq. (10), thevalue p0c=e is neither required nor allowed in the input.)The \analytic" linear transfer matrix isR � 0BBBB@ 1 0:196 0 02:02� 10�5 1 0 00 0 1 0:1960 0 �4:87� 10�3 1 1CCCCA (17)From Eq. (15) and Eq. (16) we obtain the second order transfer matrixT2ij = 0BBBB@ 0:0000 0000 0:0000 0:00000:0000 �0:5621� 10�3 0:0000 0:00000:0000 0:0000 0:6987� 10�6 0:00000:0000 0:0000 0:0000 �0:1355� 10�11CCCCA (18)



June 12, 1996 Page 105T4ij = 0BBBB@ 0:0000 0:0000 0:7277� 10�6 0:00000:0000 0:0000 0:0000 �0:6494� 10�20:7277� 10�6 0:0000 0:0000 0:00000:0000 �0:6494� 10�2 0:0000 0:0000 1CCCCA(19)Alternatively, the transfer matrix can be obtain by solving the equation of motionnumerically. ~X 00 = cB0p0c=e ~X 0 � ~B= cB0p0c=e 0B@ x̂ ŷ ẑx0 y0 1Bx By Bz1CAx00 = cB0p0c=e(�kxkyCxSyczy0 �CxCycz)y00 = cB0p0c=e(kxky SxSycz + kzkyCxSyszx0)This is an initial value problem that can be solved numerically by using theRunge-Kutta method. The value Ax = 1:4 � 10�4m. Starting with di�erentinitial conditions, we obtained the transfer matrix0BBBB@ dxdx0dydy01CCCCA = R0BBBB@ dx0dx00dy0dy001CCCCAR = 0BBBB@ 1:0000 0:1960 0:0000 0:00002:0249� 10�5 1:0000 0:0000 0:00000:0000 0:0000 0:99994 0:19600:0000 0:0000 �4:8778� 10�3 0:999951CCCCAThe vertical and horizontal focusing agrees very well with Eq. (17). It remains toapproximate the leading nonlinear deection. The T matrix obtained by using



Page 106 June 12, 1996Runge-kutta method isT1ij = 0BBBB@ 0:8530� 10�8 0:5621� 10�3 0:0000 0:00000:5621� 10�3 0:5508� 10�4 0:0000 0:00000:0000 0:0000 �0:5788� 10�5 0:1354� 10�10:0000 0:0000 0:1354� 10�1 0:2207� 10�21CCCCAT2ij = 0BBBB@ 0:1907� 10�6 0:1748� 10�7 0:0000 0:00000:1748� 10�7 �0:5621� 10�3 0:0000 0:00000:0000 0:0000 0:3405� 10�4 0:9086� 10�50:0000 0:0000 0:9086� 10�5 �0:1354� 10�11CCCCAT3ij = 0BBBB@ 0:0000 0:0000 0:1454� 10�6 �0:5621� 10�30:0000 0:0000 0:6489� 10�2 �0:5508� 10�40:1454� 10�6 0:6489� 10�2 0:0000 0:0000�0:5621� 10�3 �0:5508� 10�4 0:0000 0:0000 1CCCCA
T4ij = 0BBBB@ 0:0000 0:0000 0:7686� 10�6 0:2790� 10�60:0000 0:0000 0:7922� 10�7 �0:6489� 10�20:7686� 10�6 0:7922� 10�7 0:0000 0:00000:2790� 10�6 �0:6489� 10�2 0:0000 0:0000 1CCCCAT2ij and T4ij are essentially in agreement with Eq. (18) and Eq. (19).In TEAPOT, since the wiggler section is treated as in�nitely thin and atthe center of the range, only the deection terms, R2i, R4i, T2ij , T4ij have beenincorporated. (It can be seen mentally, from Eq. (17), that the o�-diagonal termsR12 and R34 account for the drift sections preceeding and following the thinelement.) The neglected T1ij , T3ij terms (the largest being T134) are numericallysmall for typical lattice locations, but they could conceivably be important if thewiggler were situated at a point of extremely small �.



June 12, 1996 Page 107APPENDIX JCOMPARING AND DEFINING MAGNETIC MULTIPOLESRHIC/AP/99June 1996I. MAD and Teapot andII. RHIC Measurements and TeapotG. Trahern, F. PilatIntroduction The de�nitions of the magnetic �eld in MAD and in the standardmultipole expansion (SME) used internally by Teapot are di�erent. This note,perhaps for the umpTeenth time, de�nes the relationship between the two �eldde�nitions, assuming that they are in fact referring to the same physical quan-tity. After this discussion we de�ne the relationship between RHIC's measuredmultipole coe�cients and those of Teapot.B Field in MADThe magnetic �eld in MAD is de�ned by a Taylor series expansion along thex axis as1 BMADy (x; 0) = NmaxXn=0 BMADn xnn! (21)The strength of a multipole, Kn, is de�ned to beKn = BMADnpo=e ; (22)and thus BMADn can be computed as(@nBMADy@xn )x=y=0:



Page 108 June 12, 1996B �eld according to the Standard Multipole ExpansionThe true magnetic �eld of a physcial magnet can be described by a �eldstrength BTruex (x; y; z); BTruey (x; y; z). The thin element model then expressesthis true �eld strength in terms of nominal �eld strengths Bx(x; y); By(x; y) asZ [BTruey (x; y; z) + iBTruex (x; y; z)]dz = L[By(x; y) + iBx(x; y)] (23)where the integral is taken over the length of the magnet. The standard multipoleexpansion for By and Bx is then given by2(LBy) + i(LBx) = (LBo)NmaxXn=0 (bn + ian)(x+ iy)n: (24)where we specialize to the case of a dipole. So Bo is the dipole �eld strengthat the origin. Nmax is the highest order of multipole in the series expansion.De�ning Rn + iIn = (x + iy)n we can re-write the �eld components in the SMexpansion as ~By = LBypo=e = NmaxXn=0 ~bnRn � ~anIn (25)~Bx = LBxpo=e = NmaxXn=0 ~bnIn + ~anRn (26)where ~an = LBopo=ean; ~bn = LBopo=ebn: (27)The scaling factors above are conventional, but the magnetic �elds ( ~Bx; ~By) sode�ned are just the deections that particles experience passing through the�eld, and the coe�cients (~an;~bn) are the ones used directly by Teapot. Thefactor of po=e is often referred to as \B�". The following table2 gives some



June 12, 1996 Page 109explicit examples of the multipole expansion. Also note the traditional jargonused there, e.g., �� is the \bend angle", f is the \focal length" and S is the\sextupole strength", etc.Relation between MAD Kn and SME bnAssuming that the �eld strength By is the same physical quantity in eitherrepresentation, we want to �nd how Kn is related to bn. Using the de�nition interms of partial derivatives and noticing that(@nIn@xn )x=y=0 = 0(@nRn@xn )x=y=0 = n!we see that Kn � (BMADnpo=e ) = L�1n!~bn = Bopo=en!bn: (28)The integrated strength isKn�L = BoLpo=en!bn = BoLB� n!bn (29)and in terms of ~bn, Kn�L = n!~bn: (30)The above Kn apply to the case of standard elements of length L. If one isinstead talking about MAD's multipole element which is de�ned to have zerolength, replace Kn�L in Eq. (30) by Kln to get the corresponding MAD multipolenotation.Skew components in MAD and SMEThe de�nition of the magnetic �eld from the MAD documentation in Eq. (21)explicitly excludes skew multipole moments, so it is not possible to derive a
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n Rn In ~bn ~an �x0 = � ~By �y0 = ~BxHorizontal bend 0 1 0 ��x 0 ���x 0Vertical bend 0 ��y 0 ��yErect quadrupole 1 x y q = 1=f 0 �qx qySkew quadrupole 0 qs = 1=fs qsy qsxErect sextupole 2 x2 � y2 2xy S=2 0 �S2 (x2 � y2) S2 2xySkew sextupole 0 Ss=2 Ss2 2xy Ss2 (x2 � y2)Erect octupole 3 x3 � 3xy2 3x2y � y3 O=6 0 �O6 (x3 � 3xy2) O6 (3x2y � y3)Skew octupole 0 Os=6 Os6 (3x2y � y3) Os6 (x3 � 3xy2)Erect decapole 4 x4 � 6x2y2 4xy(x2 � y2) D=24 0 �D24 (x4 � 6x2y2 + y4) D244xy(x2 � y2)Skew decapole +y4 0 Ds=24 Ds24 4xy(x2 � y2) Ds24 (x4 � 6x2y2 + y4)Table 1: Deections, �x0;�y0, caused by standard magnets and notation for theirstrengths

2



June 12, 1996 Page 111relation between MAD's way of de�ning skew multipole elements and SME's andirectly unless one looks into the Teapot code itself. We have done this (with thehelp of R. Talman). However, one can perhaps see the result on physical groundsif one considers only a single multipole. One can `convert' an erect multipole oforder n into its corresponding skew element by a rotation of the erect elementaround the longitudinal direction by its natural symmetry angle of �=(2n + 2).In this way a pure erect multipole of order n becomes a pure skew multipole ofthe same order. So one can conclude that a the strength of a skew element whichis de�ned in MAD by specifying a multipole of strength Kln = value and Tn(without a value) is related to Teapot's an as(Kln)skew = BoLpo=en!an = BoLB� n!an; (31)and (Kln)skew = n!~an: (32)(If one is instead interested in skew magnets of �nite length, then replace Klnabove by Kn�L as discussed earlier for the non-skew case.)0.2. Aside: How does Teapot do it?For those who might want to know precisely how Teapot transforms the MADinput speci�cation of multipole strength into the SME form, here is an exampleof the (old) Fortran code that was used to do this transformation.(The C++version of Teapot uses an equivalent formulation.) The example shown below isfor MAD's octupole and general multipole. The relevant lines to focus on havebeen indicated with arrow marks. The explanation follows the listing.ELSEIF (itype .EQ. 7) THENC ---- "octupole"nmax(ikelem) = 3--> el = pdata(idp)



Page 112 June 12, 1996thklen(ikelem) = el--> val = pdata(idp + 1)*el/6.*-->* ang = pdata(idp + 2)*4.--> btw(3, ikelem) = val*cos(ang)--> atw(3, ikelem) = val*sin(ang)typeaper(ikelem) = pdata(idp + 3)xapsize(ikelem) = pdata(idp + 4)yapsize(ikelem) = pdata(idp + 5)xoffset(ikelem) = pdata(idp + 6)yoffset(ikelem) = pdata(idp + 7)mxstreng(ikelem) = pdata(idp + 8)ELSEIF (itype .EQ. 8) THENC ---- "multipol"DO i = 1, 9--> val = pdata(idp)/fact(i)*-->* ang = pdata(idp + 1)*(i + 1)idp = idp + 2--> btw(i, ikelem) = val*cos(ang)--> atw(i, ikelem) = val*sin(ang)IF (iptyp(idp - 2) .NE. -1) nmax(ikelem) = iENDDOtypeaper(ikelem) = 0Note: The variables atw(n;�); btw(n;�) in the above code have exactly thesame meaning as ~an;~bn in Eq. (27).First we discuss the octupole case. In the above code pdata is the array con-taining all the information gleaned by MAD's parser from the original standardinput �le. el is the length L of the octupole. val is a local variable which equalsKn � L=3!. ang is another local variable which in the case where one just spec-i�es TILT without an argument is the default roll angle of �=8 times 4. (This



June 12, 1996 Page 113is the mysterious point. We only show how Teapot does this transformation,we don't explain the basis for it). One can see that 4 � �=8 = �=2, and thusbtw(3;�) = 0; atw(3;�) = val = Kn � L=3!.Now that we've done the octupole case, consider the thin multipole case thatfollows it. The meaning of the code variables is the same as in the octupolecase. Since thin multipole have no length, the code is simpler in some respects.The variable ang speci�es how the roll angle determines the strength of the skewelement. For example, in the case where one takes the default roll angle of �=2i+2for a skew multipole of strength Kli, one states Ti without an argument in theinput �le. Then the value of ang = pdata(idp+1)� (i+1) = (�=2i+2)� (i+1) =�=2. This leads to values of btw(i;�); atw(i;�) of 0 and pdata(idp)=fact(i) =Kli=i!, respectively, in agreement with Eq. (32).Relating RHIC's Measured Multipole Coe�cients to those of TeapotThe �eld expansion in Eq. (24) actually applies in general only to dipolessince the central �eld value Bo vanishes (or at least ought to) for other types ofmagnets such as quadrupoles, sextupoles, etc. So one must adopt a di�erent butanalogous convention for other magnet types. In chapter two of Ref. 2 there isa clear discussion of one way to do this for the case of quadrupoles, and we cancompare that with the way RHIC describes a general magnet. The multipoleexpansion for a quadrupole magnet from Ref. 2 is(LBQy ) + i(LBQx ) = (L@BQy@x )[x+ iy + 10�4 NmaxXn=2 (bQn + iaQn )(x+ iy)nRn�1r ] (33)where Rr is the reference radius where the measurement is made, and along withRr, the factor of 10�4 is chosen so that aQn ; bQn are of order 1 for \bad", low ordermultipoles. The prefactor, in this case the �eld gradient, (@BQy =@x)x=y=0, servesthe same purpose as Bo in Eq. (24).In general for every type of magnet, there is a formula of this type. Theprefactor like Bo(@BQy =@x) in the case of dipoles(quadrupoles) sets the scale



Page 114 June 12, 1996so that the coe�cients an; bn(aQn ; bQn ) represent fractional deviations from themeasured �eld strength. A similar analysis can be done for the other types ofmagnets. To summarize, the normalization of multipole coe�cients via Eq. (33)requires knowing the behaviour of the �eld at the origin.In contrast to Eq. (33) RHIC has used a slightly di�erent form to repre-sent the multipole expansion for a general magnet. According to our sourcesRefs. 3,4,5,and 6, there is uniform strategy for every type of magnet that is rep-resentative of the way the magnets are actually measured. In the following wewill assume that the local coordinate system of Teapot and the magnetic mea-surement system are the same. If this is not true, for example, if the magnet isoriented di�erently in the lattice compared to the way it was measured, appro-priate modi�cations to the sign of the coe�cients will need to be made Ref. 6.With this caveat, the RHIC convention for a magnet's multipole expansion isRef. 5. (LBy) + i(LBx) = LB(Rr)[10�4 NmaxXn=0 (bMn + iaMn )(x+ iy)nRnr ] (34)where the superscript M in aMn ; bMn denotes the fact that these are measuredmultipole coe�cients. B(Rr) is a normalization factor. This normalization ischosen so that the magnitude of the term of order k in the expansion, jbMk +iaMk j = 104 for a magnet with multipolarity 2(k+1). Consequently the multipolecoe�cient, bMk , for a \normal" or \upright" magnet of order k is 104. I.e., bM0 fordipoles is 104, bM1 for quadrupoles is 104, and similarly for skew magnets so thatfor a skew quadrupole aM1 would be 104.Since RHIC normalizes its multipole coe�cients in this way, comparison withan expression like Eq. (33) for a spec�c kind of magnet can be obtained byevaluating Eq. (34) along the x axis near the origin. We will do this exercisein the appendix, but it is not actually necessary. Teapot only requires thatthe magnetic �eld be brought to a form like Eq. (24). Eq. (34) is already in this



June 12, 1996 Page 115form, so making the correspondence with Teapot is straightforward up to possiblereversals in sign that are discussed in RHIC/AP/95, Ref/ 6 and summarized inthe next section.The factor LB(Rr) on the right hand side of Eq. (34) is measured at a �xedcurrent by the magnetic measurement group of RHIC and quoted as the IntegralTransfer Function or ITF, i.e., ITF � I = LB(Rr), where I is the current in kAat which the measurement was made. The reference radius, Rr, is also given foreach measurement.The ~an;~bn of Teapot are recovered from the above measured expansion coef-�cients in analogy to Eq. (27) by~bn = (ITF � Ipo=e )10�4Rnr bMn (35)~an = (ITF � Ipo=e )10�4Rnr aMn (36)where the bMn ; aMn are the measured multipole coe�cients, po=e is B�, and I isthe current at which the measurement was made in kA.In some cases, particularly for dipoles, the RHIC magnetic measurementsgroup does more detailed measurements of the magnetic multipoles. They mea-sure them at the body center as well as the return and lead ends of the magnet. Ifthis group of measurements is available, a di�erent form of the Teapot coe�cientsis needed since the physical dimension of the measured multipole coe�cients aredi�erent for the body and end data.If Body measurements exist, we specify body ~bBodyn ; ~aBodyn for Teapot as~bBodyn = (BTF � Ipo=e )( ITFBTF )10�4Rnr bM�Bodyn = (ITF � Ipo=e )10�4Rnr bM�Bodyn (37)~aBodyn = (BTF � Ipo=e )( ITFBTF )10�4Rnr aM�Bodyn = (ITF � Ipo=e )10�4Rnr aM�Bodyn (38)where BTF is the body transfer function with dimension Tesla=kA, and the



Page 116 June 12, 1996superscript M �Body refers to \measured Body". The factor of ITF=BTF hasdimension of length in meters and is needed to scale BTF so that it has thedimensions of an integral transfer function since bM�Bodyn ; aM�Bodyn are dimen-sionless.If End measurements exist, then the lead and return end coe�cients forTeapot are given by: ~bEndn = (BTF � Ipo=e )10�4Rnr bM�Endn (39)~aEndn = (BTF � Ipo=e )10�4Rnr aM�Endn (40)where BTF is again the body transfer function referred to above, and note thatin this case since the dimension of bM�Endn ; aM�Endn is in meters, only BTFrather than ITF is needed.Afterward on Sign Conventions for Multipole Coe�cients RHICmagnets are mea-sured in a standard way, i.e., the lead end of each magnet is oriented with respectto a local magnet coordinate system in the same way during the measurementprocess. Thus the measured multipole coe�cients are directly tied to the localmeasurement coordinate system's orientation.During installation in the tunnel a magnet may need to be rotated by �radians around the Y axis relative to the coordinate system in which it wasmeasured either for physics or mechanical/installation reasons. In these cases thesign of some multipole coe�cients used in Teapot will need to change (relative totheir signs in the measurement database) to properly model the dynamics in theglobal coordinate system used by Teapot. The nature of these sign changes hasbeen explained in Ref. 6, and we will not reproduce their detailed analysis here.However, for purposes of keeping the de�nitions of Teapot multipole coe�cientsin terms of RHIC's measured values all in one place, we include the necessaryrules here. We thank Fritz Dell for the following formulation of these rules.



June 12, 1996 Page 117The rules require an understanding of a magnet's \orientation". A magnet'sorientation is de�ned to be positive if a positive displacement relative to thehorizontal closed orbit corresponds to a positive horizontal displacement withrespect to the magnet local coordinate system discussed above. Otherwise theorientation is negative. See Ref. 6 for a clear statement of the de�nition of thelocal magnet measurement coordinate system and its relation to the lead andnon-lead ends of the magnet.1. For Normal magnets whose main multipole is even (dipoles, sextupoles, etc.),or for Skew magnets whose main multipole is odd (quadrupoles, octupoles,etc.)� Positive orientation: use bMn ; aMn as is.� Negative orientation: change sign of bMn with odd n, and change sign ofaMn with even n.2. For Normal magnets whose main multipole is odd (quadrupoles, octupoles,etc.), or for Skew magnets whose main multipole is even (dipoles, sextupoles,etc.)� Positive orientation: use bMn ; aMn as is.� Negative orientation: change sign of bMn with even n, and change sign ofaMn with odd n.AcknowledgementsThe authors would like to thank Richard Talman for many helpful and de�ni-tive conversations. And we would also thank Animesh Jain for both carefullyreading and correcting sections six and seven.Appendix Relating B(Rr) to the Field at the Origin



Page 118 June 12, 1996The normalizing factor B(Rr) can be related theoretically to the value of the�eld at the origin in the following way. From Eq. (34) the value of the integrated�eld at y = 0 is(LBy + iLBx)jy=0 = LB(Rr)[10�4 NmaxXn=0 (bMn + iaMn ) xnRnr ] (41)For a \normal" magnet of order k; bMk = 104; aMk = 0. Taking partial deriva-tives k times, we have@k(LBy)@xk jx=y=0 = k!(LB(Rr))10�4 bMkRkr : (42)Noting that bMk = 104 in the case of a normal magnet of order k, we �ndB(Rr) = (@kBy@xk )jx=y=0Rkrk! : (43)For the case of a skew magnet of order k a similar analysis yieldsB(Rr) = (@kBx@xk )jx=y=0Rkrk! : (44)References1. C. Iselin, \The MAD Program, version 8.1 documentation."2. R. Talman, \Accelerator Mathematics", Laboratory for Nuclear Studies,Cornell University., Ithaca, N.Y. 1994.3. J. Wei, F. Dell, private communications.4. A. Jain, private communication.5. R. Gupta, \Estimating and Adjusting Field Quality in SuperconductingAccelerator Magnets", RHIC/AP/87, 1996.6. P. Wanderer, A. Jain, S. Peggs, F. Dell, J. Wei, D. Trbojevic, \RHIC MagneticMeasurements De�nition", RHIC/AP/95, 1996.


